

THE OPTIMAL CHOICE OF A GENERIC
LASER SYSTEM FOR THE COMMERCIAL
STERILISATION OF MICRO-ORGANISMS

Richard M. Farrar

A thesis submitted in partial fulfilment of the requirements of the University of

the Wales, for the degree of Doctor of Philosophy.

This research programme was carried out at the University of Wales, Swansea

under the supervision of Professor R. M. Clement, B.Sc., Ph.D., M.Inst.P.,

F.I.E.E., C.Eng. and in collaboration with ADAS Consulting Limited.

April 2003

- i -

DECLARATIONS

DECLARATION

This work has not previously been accepted in substance for any degree and is not

being concurrently submitted in candidature for any degree.

Signed (candidate)

Date 28 April 2003

STATEMENT 1

This thesis is the result of my own investigations, except where otherwise stated.

Other sources are acknowledged by footnotes giving explicit references. A

bibliography is appended.

Signed (candidate)

Date 28 April 2003

STATEMENT 2

I hereby give consent for my thesis, if accepted, to be available for photocopying

and for inter-library loans, and for the title and summary to be made available to

outside organisations.

Signed (candidate)

Date 28 April 2003

- ii -

ABSTRACT

University of Wales, Swansea

Department of Electronic and Electrical Engineering

Doctor of Philosophy

The Optimal Choice of a Generic Laser System for the Commercial

Sterilisation of Micro-organisms

by

Richard M. Farrar

This thesis describes the theory and practical application of controlled laser
radiation to denature micro-organisms on the surface of a given substrate in a
commercial scale system. The described research system has been proven to
achieve these aims tested on one specific bacterial example and one substrate.

The investigation evaluates the cell physiology of micro-organisms and the
required physical and chemical parameters that are capable of denaturing them. A
summary of the current state of sterilisation technologies with respect to their
relative efficiencies and applications is presented, with specific attention being
focused on the use of laser light sources and their associated photo-thermal
effects. The optimal choice of laser wavelength is discussed together with its
required spatial and temporal profiles to denature a broad range of micro-
organisms.

The investigation centres on the use of continuous wave carbon dioxide lasers
(with a wavelength of 10.6 µm) as the preferred choice to denature a variety of
organisms, predominately Salmonella enteritidis, residing on the surface of
chicken eggs destined for hatching. The initial trials showed that a kill rate of
99.988 % (3.9 log) could be achieved.

The research system has been developed in conjunction with ADAS Consulting
Limited (ADAS), which was formerly a government body affiliated to the
Ministry of Agriculture, Fisheries and Food.

- iii -

OBJECTIVES

The aim of this investigation was to ascertain the optimal parameters required of a

generic laser system to sterilise a variety of surfaces that could contain a host of

micro-organisms, without causing any damage or undesirable changes to the

contaminated surface being treated.

The requirements of the study were to find the optimum laser source that could

denature the greatest variety of organisms in the quickest and most efficient

manner. Furthermore, such a system should also be capable of treating a plethora

of substrates of numerous shapes and sizes, without any adverse effects to the

substrates.

A further objective of the study was to investigate the means of delivering such

laser energies to the required substrates while maintaining a uniform treatment of

the substrate in order to achieve consistent sterilisation results.

- iv -

ACKNOWLEDGEMENTS

I would like to acknowledge the following individuals for their help and support

during this study, namely, Mr. Chris Williams and Prof. Marc Clement of ICN

Photonics Limited (ICN) and Mr. Peter Redman and Miss Sue Tucker (who sadly

died during the course of this study) of ADAS Consulting Limited (ADAS).

I would also like to thank the numerous individuals who kindly read and

commented on this thesis and helped in the preparation of the research machine.

Finally, thanks must go to my wife Lynda for her encouragement and support

throughout the period of my research, and my son James for all the hours I missed

being with him during my studies.

- v -

“I wonder why I wonder why. I wonder why I wonder. I

wonder why I wonder why I wonder why I wonder.”

- Richard P. Feynman

- vi -

To my son James.

- vii -

CONTENTS

Declarations i

Abstract ii

Objectives iii

Acknowledgements iv

Contents vii

List of Figures x

List of Tables xii

List of Abbreviations xiii

1: Introduction 1

1.1 Introduction 2

1.2 The Need 2

1.3 Laser Advantages 3

1.4 Existing Knowledge 4

1.5 Investigation Aims 4

2: Cell Physiology and sterilisation Methods 6

2.1 Introduction 7

2.2 Cell Physiology 9

2.2.1 Bacteria 9

2.2.2 Viruses 25

2.2.3 Fungi 28

2.3 Current Sterilisation Methods 29

2.3.1 Heat 31

2.3.2 Dry Heat 32

2.3.3 Moist Heat (Autoclaving) 33

2.3.4 Cold 34

2.3.5 Desiccation 35

2.3.6 Cellular Disintegration 35

2.3.7 Chemical Disinfectants 36

2.3.8 White Light 39

- viii -

2.3.9 Ultra-violet Light 40

2.3.10 Laser Light 42

2.3.11 Plasma 44

2.3.12 Electric Fields 45

2.3.13 Ionising Radiation 46

2.4 Summary 49

3: Laser Parameter Selection 53

3.1 Introduction 54

3.2 Wavelength Selection 55

3.2.1 Electromagnetic Spectrum 55

3.2.2 Photon Energies 57

3.2.3 Principle Radiation Effects 60

3.2.4 Light Absorption 61

3.2.5 Light Absorption in Water 62

3.2.6 Wavelength Analysis 68

3.3 Selected Laser Wavelength 76

3.4 Spatial and Temporal Profile Analysis 78

3.4.1 Spatial Analysis 79

3.4.2 Temporal analysis 81

3.5 Summary 83

4: Experimental System Design 85

4.1 Introduction 86

4.2 Egg Structure 87

4.2.1 Egg Shell 88

4.2.2 Egg Albumen (Egg White) 92

4.2.3 Egg Yolk 93

4.3 Specific Egg Handling Requirements 93

4.4 Concept Design 94

4.4.1 Resonant Scanner Concept 95

4.4.2 Tracking Galvanometer Concept 98

4.5 Specific Design Parameters 100

4.5.1 Outline System Design 100

- ix -

4.5.2 Resonant Scanner with Laser Power Modulation 102

4.5.3 General Beam Manipulation 107

4.5.4 Return Stroke Optimisation 111

4.5.5 Tracking Mirror Optimisation 112

4.6 General Construction 117

4.7 System Control 119

4.8 Summary 120

5: Experimental Analysis 123

5.1 Introduction 124

5.2 Methodology 125

5.2.1 Microbiological Methodology 125

5.2.2 Experimental Configuration 127

5.3 Results 128

5.4 Analysis 129

5.4.1 Statistical Analysis 130

5.4.2 System Analysis 132

5.5 Summary 140

6: Discussion 142

6.1 Introduction 143

6.2 Discussion 144

6.3 Conclusions 148

6.4 Future Work 149

7: Bibliography 153

8: Appendices 160

8.1 Appendix 1: Prototype Trial Results 161

8.2 Appendix 2: Utility Program 163

8.3 Appendix 3: Research System Control Program 168

8.4 Appendix 4: Research System Remote Control Program 227

- x -

LIST OF FIGURES

Fig. 2.1: Relative sizes of common particles and objects. 8

Fig. 2.2: Biological kingdoms of plants, animals and protests. 10

Fig. 2.3: Escherichia coli cell. 12

Fig. 2.4: Dividing bacterium with flagella and pili. 15

Fig. 2.5: Mortality effect of different temperatures on E. coli at pH 7. 32

Fig. 2.6: Development of radiation damage in cells. 47

Fig. 3.1: Electromagnetic spectrum from radiowaves to γ-rays. 56

Fig. 3.2: Electromagnetic spectrum for light wavelengths. 57

Fig. 3.3: Light absorption in water plotted against wavelength. 65

Fig. 3.4: Low order laser transverse electromagnetic mode patterns. 79

Fig. 3.5: Energy profile of TEM00 mode laser beam. 80

Fig. 4.1: Internal structure of an egg. 88

Fig. 4.2: Transverse section of an egg's shell. 89

Fig. 4.3: Egg passing stationary curtain of laser light. 95

Fig. 4.4: Linear beam profile from fixed optical arrangement. 96

Fig. 4.5: Compensation of grazing incidences and mark to space ratio. 99

Fig. 4.6: Central processing point of trial machine. 101

Fig. 4.7: Laser power modulation for resonant scanner waveform. 103

Fig. 4.8: Signal derivation for laser power. 104

Fig. 4.9: Resonant scanner waveform on thermally sensitive paper. 106

Fig. 4.10: Optical layout of trial machine. 107

Fig. 4.11: Combining of two polarised laser beams. 109

Fig. 4.12: Laser de-coupling, HeNe beam and pneumatic mirrors. 110

Fig. 4.13: Pneumatic circuit for mirror control. 112

Fig. 4.14: Mechanical layout of tracking galvanometers. 114

Fig. 4.15: Scanning configuration of eggs. 115

Fig. 4.16: Tracking mirror scan profiles. 116

Fig. 4.17: Scan compensation to match egg profile. 117

- xi -

Fig. 4.18: Experimental machine. 118

Fig. 4.19: Screen shot of trial machine’s remote control software. 120

Fig. 5.1: Screen shot of energy density calculator. 136

Fig. 5.2: Screen shot of energy density graph. 137

Fig. 5.3: Egg passing resonant scanner beam. 138

Fig. 5.4: Scan pattern showing uniformity of coverage. 140

Fig. 6.1: Graph of system operating parameters. 150

- xii -

LIST OF TABLES

Table 2.1: Comparative sizes and morphologies of bacteria. 11

Table 2.2: Generation time of organisms under optimal conditions. 19

Table 2.3: Cardinal temperatures for vegetative growth of various organisms. 20

Table 2.4: Species of the genus Salmonella. 22

Table 2.5: Comparative sizes and morphologies of common viruses. 26

Table 2.6: Equivalent minimum sterilising temperatures in moist / dry heat. 33

Table 2.7: Laser types test for bactericidal effectiveness. 43

Table 2.8: Radiation doses for typical sterilisation procedures. 48

Table 3.1: Sample selection of commonly available laser types. 58

Table 3.2: Common biological molecular bond energies. 59

Table 4.1: Synrad laser series 57-1 specifications. 105

Table 5.1: Kill rates 129

Table 5.2: Kill rate calculations 131

Table 5.3: Prototype system parameters. 132

Table 5.4: Summary of prototype system energy densities. 135

Table 6.1: Comparison of CO2 laser sterilisation trials. 147

- xiii -

LIST OF ABBREVIATIONS

A/D - Analogue to Digital

ADP - Adenosine Diphosphate

ATM - Atmospheres

ATP - Adenosine Triphosphate

CAD - Computer Aided Design

CFUs - Colony-Forming Units

CO2 - Carbon Dioxide

COSHH - Control Of Substances Hazardous to Health

CW - Continuous Wave

D/A - Digital to Analogue

DNA - Deoxyribonucleic Acid

Er:YAG - Erbium Yttrium Aluminium Garnet

FIR - Far Infrared

HeNe - Helium Neon

LD - Lethal Dose

MRD - Maximum Recovery Dilutent

Nd:YAG- Neodimium Yttrium Aluminium Garnet

PCA - Plate Count Agar

PSI - Pounds per Square Inch

RF - Radio Frequency

RNA - Ribonucleic Acid

SAL - Sterility Assurance Level

SI - Système International d'Unités

TEA - Transverse Excited Atmospheric

TEM - Transverse Electromagnetic Mode

TMV - Tobacco Mosaic Virus

TVC - Total Viable Count

UV - Ultra-violet

1: Introduction

- 1 -

1 : INTRODUCTION

1: Introduction

- 2 -

1.1 Introduction

The principle of using high intensity light to denature living organisms has existed

virtually since the discovery of the simple lens. Many a child has cruelly burnt

ants with the aid of a magnifying glass, a clear day and a bright sun. Indeed, the

power of the sun’s rays harnessed through a simple lens was documented as far

back as BC423 by a Greek writer Aristophanes (BC380 to BC448) who wrote a

comedy, Clouds, in which a character used an object (“Burning glass”) to reflect

and concentrate the sun's rays, melting an “I owe you “ recorded on a wax tablet.

Following the invention of the first practical laser in 1960 by T. H. Maiman [1], the

ability of laser light to denature living cells was first demonstrated shortly

afterwards by Saks and Roth in 1963 [2] using a pulsed ruby laser.

1.2 The Need

In today's society, there is an ever-increasing obsession for sterilisation and

cleanliness. Things considered safe and clean only a few years ago are now

considered dirty and therefore potentially dangerous. An example of this being the

much-publicised controversy in the United Kingdom in 1988 over the Salmonella

enteritidis bacteria sometimes found on and in chicken eggs destined for human

consumption.

The needs for sterilisation in modern society will continue to expand due to ever

increasing media pressure. This will cross many boundaries from the sterilisation

of surgical implements to that of foodstuffs, e.g. dairy produce and fruit juices.

For most traditional applications of sterilisation, there exists the potential for an

equivalent laser based sterilisation system.

1: Introduction

- 3 -

1.3 Laser Advantages

Lasers have many advantages over many other more traditional sterilisation

techniques, namely:

• Lasers are a non-contact process and therefore do not contribute to cross

contamination of the items being treated.

• Being non-contact, lasers can treat physically delicate items that otherwise

may be very difficult to process.

• Laser light can be readily transported from point to point with relative ease

and a high degree of accuracy.

• Lasers can generate very high energy densities on substrates in very

localised areas without effecting surrounding areas of the substrate.

• Lasers can generate very high energy densities within very short time

periods without localised areas of substrates having sufficient time to heat

up.

• Lasers have a benign public image in comparison to alternative

technologies such as ionising radiation.

These features provide many benefits in laser materials processing, although some

of the perceived benefits could become disadvantages in practical applications.

For example, the ability of a laser system to produce very high energy densities in

localised areas would be a distinct disadvantage if a large surface area needed to

be processed with the same high energy density.

1: Introduction

- 4 -

1.4 Existing Knowledge

While the application of laser technology for cell denaturation has been studied

for many years by a variety of researchers [2] - [6], it has yet to be proved an

efficient system suitable for commercial applications.

The effects of numerous laser systems [7] on a multitude of micro-organisms [6]

have been investigated in recent years. The results conclusively prove that lasers

can permanently denature living organisms. However, the choice of laser system

is crucial to the sterilisation efficiency experienced. Moreover, the range of

organisms that could be encountered makes the choice of a generic laser system,

which will be commercially viable, somewhat more difficult.

1.5 Investigation Aims

The aim of this investigation was to review the current state of technology in this

field and to expand on the knowledge to date, with experimental trials conducted

on a large-scale laser based sterilisation system capable of denaturing a wide

range of micro-organisms.

The experimental system was specifically constructed for the purpose of these

trials. All trials were conducted on hatching eggs destined for breeding stock. A

range of trials on artificially contaminated eggs was conducted. These trials were

designed to assess the optimal laser parameters required from a generic laser

system to achieve maximum, reproducible kill rates of selected bacteria.

To this aim, the investigation has achieved the original objective. The evaluation

system constructed allowed a number of laser treatment parameters to be

simultaneously varied on a semi-commercial scale to assess the viability of a

generic laser device – namely a carbon dioxide (CO2) laser.

1: Introduction

- 5 -

The results of these trials show conclusively that such a system is a commercial

viability, and with continuing refinement, could be applied to numerous

applications beyond the experimental trials with hatching eggs for breeding stock.

2: Cell Physiology and Sterilisation Methods

- 6 -

2 : CELL PHYSIOLOGY AND
STERILISATION METHODS

2: Cell Physiology and Sterilisation Methods

- 7 -

2.1 Introduction

In order to gain a deeper understanding of the current and proposed sterilisation

methods for micro-organisms, a firm background in micro-organism cell

physiology is required. This background is essential for the informed analysis of

the primary sterilisation requirements for micro-organisms.

The first section of this chapter reviews the basic elements of micro-organism’s

cell physiology. In this section, the requirements for cell growth and reproduction

are evaluated, together with the external factors effecting the cell's behaviour and

life span. The primary focus of this section is the external factors that can be

applied to micro-organisms in order to promote necrosis.

The second section of this chapter reviews current, commercially available

sterilisation methods. The latter part of this section reviews new technologies for

sterilisation that may not have been commercially implemented to date, or are still

in their infancy. This section forms the existing knowledge base for sterilisation

methods, upon which the proposed methods are founded.

Figure 2.1 shows typical bacterial and viral sizes in relation to other common

particles [8]. This gives a useful comparison when trying to visualise the sizes of

particular micro-organisms in relation to commonly occurring particles or objects,

and provides some idea as to the scale of the micro-organisms that are subject to

various sterilisation techniques.

2: Cell Physiology and Sterilisation Methods

- 8 -

Fig. 2.1: Relative sizes of common particles and objects.

The following section will now discuss basic cell physiology, concentrating on

bacteria with a more general overview of viruses and fungi.

2: Cell Physiology and Sterilisation Methods

- 9 -

2.2 Cell Physiology

Basic cell physiology is not a new science and has been documented since as far

back as 1665 when Hooke first described the existence of cells as “empty

structural units” [9]. There now exists a plethora of textbooks and papers on almost

every conceivable area of cell physiology. It is beyond the scope of this

programme of study however, to go into any great depth on cellular biology.

Rather, the aim of this section is to gain an overview of the cell physiology in

particular relation to pathogenic micro-organisms and the sterilisation of the

aforesaid organisms.

The following three sections outline the physiology of bacteria, viruses and fungi

respectively, with particular attention being paid to bacteria.

2.2.1 Bacteria

Bacteria were first discovered in 1674 by Anton van Leeuwenhoek [10]. It was not

until the eighteenth century however, with the invention of the compound

microscope, that serious study and classification of bacteria and other micro-

organisms began.

Bacteria are members of the protista kingdom, which also includes algae, fungi,

protozoa, slime moulds and blue green algae. This kingdom is further subdivided

into higher protists and lower protists. A higher protista’s cell nucleus is

surrounded by a nuclear membrane for most of the cell's life. Lower protists

however, do not have this membrane. Their nucleus is in direct contact with the

cell's cytoplasm.

Figure 2.2 shows the three kingdoms of plants, animals and protists, with the

closer relation of some protists to either the plant or animal kingdoms [10].

2: Cell Physiology and Sterilisation Methods

- 10 -

PLANTS

ANIMALS

FUNGI

 ALGAE

Higher Protists

PROTOZOA

BLUE-GREEN

ALGAE
 BACTERIA

Lower Protists (No Nuclear Membrane)

Fig. 2.2: Biological kingdoms of plants, animals and protests.

Algae, slime moulds and protozoa are beyond the scope of this thesis, with the

concentration being primarily on bacteria, particularly pathogenic bacteria, with a

brief discussion of fungi. Viruses will also be covered, although they are not

strictly living organisms.

Bacteria are organisms that posses rigid cell walls and no nuclear membrane.

Motile bacteria have flagella, which are the organelles of motion. The key

purpose of the bacteria's life is to reproduce - this they achieve with incredible

speed and efficiency.

Bacteria come in three primary morphologies; rods (baccili), helices (vibrios or

spirilla) and spheres (cocci, literally translated from the Latin for "berry"). Rods

are the most common variety. Spirilla have more than one turn of a helix while

vibrios have less than one turn of a helix. An example of a spherical bacterium is

Pneumoccocus (singular) or Pneumococci (plural), which is the bacterium

responsible for causing pneumonia.

2: Cell Physiology and Sterilisation Methods

- 11 -

Louis Pasteur and Robert Koch, who both pioneered the early work in

microbiology, showed that infectious diseases were caused by living organisms or

"germs" (i.e. pathogenic bacteria) [11]. The harmful effects of many bacteria

causing disease in animals are due to the direct or indirect production of toxins by

the bacteria. These may be endotoxins, which are formed in the bacterial cells

and only released when the bacteria die and disintegrate, or exotoxins, which are

excreted by the bacterial cells during normal metabolism. These toxins all tend to

be proteins [12].

While sizes of bacteria vary greatly through the different strains of bacteria, their

typical size is of the order of 0.5 µm to 30 µm, with a typical volume of 2 µm3

and weight of 20 × 10-7 g. Typically 80 % of this weight is water. Table 2.1

outlines the sizes and morphologies of a few common bacteria [12].

Table 2.1: Comparative sizes and morphologies of bacteria.

Bacteria Morphology Size (µµµµm)

Staphylococcus albus Spheroidal 1

Mycobacterium tuberculosis Rod 2.5 to 3.5 × 0.3

Salmonella typhi Rod 2 to 4 × 0.5

Escherichia coli Rod 2 to 4 × 0.5

Clostridium botulinium Rod 3 to 8 × 0.6 to 1

Aspergillus niger spore Spheroidal 2.5 to 4

Botrytis cinerea spore Ellipsoidal 8 to 12 × 6 to 10

Being very small bacteria have a very large surface area to volume ratio. For a

given mass of cells, a larger surface area equates to a faster exchange of

substances via the cell walls [10]. This is very efficient for the bacteria during

normal metabolism, but can also be an advantage in the destruction of bacteria.

2: Cell Physiology and Sterilisation Methods

- 12 -

The following sections of this chapter give a brief outline of the physiology of a

typical bacterial cell. Figure 2.3 shows a typical bacterial cell. This is a rod shaped

cell, Escherichia coli bacterium, which has been the most commonly studied

bacterium.

 Fig. 2.3: Escherichia coli cell.

2.2.1.1 Bacterial Capsule

A capsule formed from polysaccharides (sugars) or polypeptides surrounds the

cells of many bacteria. These capsules act as protective barriers to the cell. These

capsules however can vary in size on the same strain of bacteria, with some

bacteria losing the ability to form these capsules during their life. Cells with

capsules are more resistant to attack from animal phageocytes (viruses) than those

cells without capsules [10].

Cytoplasm

Cell Wall

0.5 µm scale

Nucleus

2: Cell Physiology and Sterilisation Methods

- 13 -

2.2.1.2 Gram Stain Reaction

The Gram reaction is a staining test performed on bacteria using the Gram stain,

named after its inventor Christian Gram, who invented the process in 1884 [13].

This procedure involves staining bacteria with a para-rosaniline dye, such as

crystal violet, at a slightly alkaline pH, to produce a blue stain. This will stain all

bacteria blue. The next stage of the procedure involves treating the stained

bacteria with iodine in a solution of potassium iodide (or alternatively picric acid),

to fix the stain. The final procedure is to decolourise the stained bacteria with

alcohol or acetone. The results provide two classifications of bacteria:

• Gram-positive - these bacteria remain coloured

• Gram-negative - these bacteria become decolourised

These classifications can be very useful when characterising bacteria. For

example, all spore forming bacteria are Gram-positive and all polarly flagellated

bacteria are Gram-negative. Gram-negative bacteria tend to be more resistant to

antibiotics, chemical and physical attack and have differently structured cell walls

than Gram-positive bacteria.

2.2.1.3 Flagella

The most common form of motility for bacteria is via flagella (from Latin

meaning "whip"). Bacteria swim using these flagella and can obtain velocities of

up to 20 µm·s-1. Different types of bacteria have different organisations of

flagella. These flagella are typically 10 nm to 20 nm thick, 4 µm to 5 µm long and

helical in shape. Their construction is entirely protein.

2: Cell Physiology and Sterilisation Methods

- 14 -

Bacteria with flagella can be sub-divided into two further classifications:

• Polar flagella - these flagella are restricted to one or both ends of a

bacterium. This organisation of flagella is only found on the rod and helical

bacteria morphologies.

• Peritrichous flagella - these flagella are found around the complete

bacterium and are general for all bacteria.

2.2.1.4 Pili

Many Gram-negative bacteria have hair-like pili (from Latin for "hair") or

fimbriae (from Latin for "fringe"). Each bacterium may have several hundred of

these structures. These structures are of the order of 3 nm to 5 nm in diameter

(compared to flagella which are 10 nm to 20 nm in diameter) and several microns

long. Like the flagella, they are constructed entirely from protein. Their main

purpose seems to be in aiding the bacteria in attachment, for example, they are

often seen in bacteria that remain near the surface of a liquid, where there is an

increased supply of oxygen.

Figure 2.4 shows an electron microscope photograph of a dividing cell that has

two flagella and about 200 pili. The bacterium in this photograph is Salmonella

anatum.

2: Cell Physiology and Sterilisation Methods

- 15 -

Fig. 2.4: Dividing bacterium with flagella and pili.

2.2.1.5 Endospores

Endospores are a unique feature of bacteria. The endospore is a resistant spore

that has little free water and can withstand both chemical and physical extremes

that normal vegetative cells could not. The endospore performs no metabolism.

This is in effect a built in defence mechanism of survival, triggered when a

bacterium finds itself in an increasingly hostile environment. For example, an

endospore can still germinate after several hours in boiling water.

Having little free water, the endospores are significantly denser than the host

bacterium. Moreover, the endospore is very highly refractile to light and is in

what is termed a "glassy state". Only one endospore is found per bacterium cell,

and will typically form one quarter to one half of the cell’s volume. The cell in

which an endospore is found is a sporangium.

A spore requires a suitable medium and environmental conditions to germinate. In

germination, the spore soaks water and swells. In doing so, it looses refractility

and decreases in density. Finally, the spore coat ruptures and a new vegetative cell

emerges and grows.

2: Cell Physiology and Sterilisation Methods

- 16 -

Some forms of bacteria, for example Azotobacter, have cysts formed from the

entire cell. These perform a similar task to endospores, but are less resistant to

environmental extremes. Endospores are mainly found in bacteria of the

Clostridium and Bacillus genera. The Clostridium genera are strict anaerobes,

while the Bacillus genera are aerobes.

2.2.1.6 Cell Walls

The bacterial cell membrane is surrounded by a rigid cell wall. This cell

membrane (or plasma membrane) is semi-permeable. The cell wall is a purely

mechanical structure, which has been demonstrated by removing the cell wall

with the organism continuing to survive, but adopting a spherical shape.

Being semi-permeable, the cell membrane will allow the exchange of fluids by

osmosis. The rigid cell wall is very strong, and has been shown to withstand up to

300 psi (pounds per square inch) or 20 atm (atmospheres) of osmotic pressure

when placed in pure water [10].

Bacterial cell walls are approximately 5 nm to 10 nm thick and constructed from

polysaccharides (sugars) such as glucose, galactose and mannose. Some of these

however, can be the amino sugar varieties rather than simple sugars, for example

glucose being the simple sugar, with glucosamine being the amino variety.

The cell walls of Gram-negative bacteria are more complex chemically and

architecturally than Gram-positive bacteria. They are also stronger. For example,

the Escherichia coli bacterium has at least two layers in the cell wall, providing a

much stronger wall, with this particular bacterium being Gram-negative.

2: Cell Physiology and Sterilisation Methods

- 17 -

2.2.1.7 Nucleus

Bacteria have no nuclear membrane. The nucleus is the area of the cell that

contains the localisation of genetic material, and contains a single

deoxyribonucleic acid (DNA) molecule. Bacteria can have from one to three

nuclei; all located more or less centrally to the cell.

2.2.1.8 Metabolism and Reproduction

Metabolism and reproduction of bacteria are key to this programme of study. If

either of these is prevented from occurring, then sterilisation can be considered to

have taken place. By definition, sterilisation is the power to "deprive of power of

reproduction" [14]. Preventing a bacterium from performing metabolism will also

prevent the bacterium from reproducing, as the cell will have no energy to

perform the biosynthesis required for reproduction.

Cells are self-replicating, but in order to replicate the cell needs to obtain

necessary material from its environment. Moreover, the cell will require energy to

transform the material gained from the environment into viable cell material. This

energy is also gained from material in the environment.

In the process of metabolism, a bacterial cell acquires material from the

environment, which can generate exergonic or catabolic reactions - i.e. reactions

that yield energy. This energy is trapped in the formation of ATP (adenosine

triphosphate) from ADP (adenosine diphosphate) and phosphoric acid. This is an

endergonic or anabolic reaction (i.e. a reaction that absorbs energy). This ATP

can be later used by the cell for biosynthetic reactions requiring energy, which can

be gained from the decomposition of the ATP molecule. In this manner ATP plays

a pivotal roll in the metabolism and growth of the cell, and can be considered as

an energy storage medium for the cell [15].

2: Cell Physiology and Sterilisation Methods

- 18 -

The oxidation of foodstuffs to generate energy is the key respiratory process in

living organisms and is an exergonic reaction. This process may take place with or

without the presence of oxygen, provided there are hydrogen receptors to remove

hydrogen from the glucose molecule and hence oxidise it. Organisms that use

oxygen as part of the respiratory process are classed aerobes, while those that do

not are called anaerobes. Strict anaerobes are poisoned by air or oxygen and are

unable to grow in its presence.

As the cell metabolises, the continuous process of biosynthesis will create new

cellular material. Eventually the cell will reach a level at which binary fission

occurs. One cell now becomes two, with the process now continuing in the two

separate cells.

In order for cells to grow, there needs to be a sufficient supply of nutrients

together with equitable physical conditions such as temperature. Cells typically

have a three-phase development cycle when introduced into a new medium.

The first phase of a newly inoculated culture is the lag phase. During this time, no

growth occurs while the cells take several hours to adapt to their new

environment. During the second log phase, cells reproduce rapidly. During this

phase, the logarithmic plot of cells with respect to time is a straight line, hence the

name log phase. The final phase is the stationary phase. During this phase, the

numbers of cells in the culture remain constant. In a closed system, this may be

brought about by changes in pH, exhaustion of nutrients or accumulations of

retarding agents.

Analysing the slope of the log phase, it is possible to determine the phase

generation time of a culture of organisms. This generation time is the frequency

with which the cells divide and is mainly determined by supply of nutrients and

temperature. Table 2.2 shows typical generation times for organisms under

optimum conditions. If a culture is held at a reduced temperature for a while, cell

division ceases, but cell growth may continue at a reduced rate. When the

temperature is reinstated, all cells will simultaneously divide synchronously. This

is classed as a synchronised culture.

2: Cell Physiology and Sterilisation Methods

- 19 -

Table 2.2: Generation time of organisms under optimal conditions.

Bacteria Generation Time

Escherichia coli 20 min

Mycobacterium tuberculosis 18 h

Saccharomyces cerevisiae 2 h

Schizosaccharomyces pombe 4 h

2.2.1.9 Temperature Effects on Growth

Varying temperatures can have marked effects on different organisms. Different

organisms will all have different optimal temperatures for sustained growth. There

are three key classifications of organisms with respect to temperature tolerances:

• Psychrophils are organisms with optimal temperatures lower than 20 °C.

Some will continue to grow, albeit more slowly, at very low temperatures.

• Mesophils include most micro-organisms and have optimal temperatures in

the range of 20 °C to 45 °C.

• Thermophils have optimal temperatures of 45 °C and above, some of which

can survive at temperatures sufficiently high to kill most fungi and bacteria.

Table 2.3 shows comparative cardinal temperatures for a range of micro-

organisms.

2: Cell Physiology and Sterilisation Methods

- 20 -

Table 2.3: Cardinal temperatures for vegetative growth of various organisms.

Micro-organism Minimum

Temp. (°°°°C)

Optimum

Temp. (°°°°C)

Maximum

Temp. (°°°°C)

Clostridium thermocellum 50 60 68

Thermomyces lanuginosus 28 to 32 45 to 50 58 to 60

Rhizomucor sp. 25 to 30 45 to 50 60 to 61

Mucor pusillus 21 to 23 45 to 50 50 to 58

Chaetomium sp. 25 40 to 50 62

Escherichia coli 10 37 45

Mycobacterium tuberculosis 30 37 40

Saccharomyces cerevisiae 1 to 3 28 40

Fusarium caeruleum 5 20 30

Cladosporium herbarum -6 Unknown 20

2.2.1.10 Aeration Effects on Growth

This effect does not always come into play, depending upon the organism's

requirements for oxygen, its supply and the physical environment in which the

organisms are resident. This is typically most important in liquid cultures.

If organisms cannot obtain sufficient oxygen for their requirements, then

reproduction and cell growth will cease, with eventual death of the cells under

prolonged conditions.

2: Cell Physiology and Sterilisation Methods

- 21 -

2.2.1.11 Light Effects on Growth

Light is generally not important for micro-organisms, other than the

photosynthetic varieties. On most organisms, light has little or no effect on

growth.

However, bacteria and many other organisms are susceptible to ultra-violet (UV)

light and x-rays, which readily kill them. Exposure to sub-lethal doses of ultra-

violet light may cause mutations of the organisms. Taking account of this effect,

ultra-violet light is commonly used as a bactericidal agent (discussed later in this

chapter).

2.2.1.12 Salmonella

As the main commercial trials planned for this study were to utilise chicken eggs

from breeding stock contaminated either naturally or artificially with Salmonella

enteritidis bacteria, this section will discuss the Salmonella bacteria specifically in

detail.

Salmonellae are rod shaped, motile bacteria with a few non-motile exceptions

such as Salmonella gallinarum and Salmonella pullorum. Salmonellae are non-

spore forming, Gram-negative and are facultatively anaerobic. They are resilient

micro-organisms that readily adapt to extreme environmental conditions.

Salmonellae actively grow within a wide temperature range ≤ 54 ºC and also

exhibit psychrotrophic properties, as reflected in the ability to grow in foods

stored at 2 ºC to 4 ºC [16]. However, their growth is slow at temperatures below

10 ºC. There is a widespread occurrence of these bacteria in animals, especially in

poultry and swine. Environmental sources of the organism include water, soil,

insects, factory surfaces, kitchen surfaces, animal faeces, raw meats, raw poultry,

and raw seafoods, to name only a few.

2: Cell Physiology and Sterilisation Methods

- 22 -

Salmonellae consist of a range of very closely related bacteria. This means that

they all belong to the genus Salmonella, a division that groups similar, though not

identical bacteria together. These bacteria are named after the scientist who

discovered them, Dr. Daniel E. Salmon. The majority of the components of these

bacteria are identical, and at the DNA level, they are between 95 % and 99 %

identical (as a comparison Escherichia coli and Salmonella, which are closely

related to each other, are about 60 % to 70 % identical at the DNA level) [17]. The

Salmonella family includes over 2 300 serotypes (Table 2.4) of bacteria, many of

which cause disease in humans and animals [16].

Table 2.4: Species of the genus Salmonella.

Species No. of serovars

Salmonella enterica

 subsp. enterica 1 405

 subsp. salamae 471

 subsp. arizonae 94

 subsp. diarizonae 311

 subsp. houtenae 65

 subsp. indica 10

Salmonella bongori 19

 2 375

The majority of Salmonella species are generally different serovars of Salmonella

enterica. As their name suggests Salmonella enterica are involved in causing

diseases of the intestines (“enteric” means pertaining to the intestine). The three

main serovars of Salmonella enterica are typhimurium, enteritidis, and typhi.

Each of these is discussed further below.

2: Cell Physiology and Sterilisation Methods

- 23 -

To complicate matters, serovars of Salmonella enterica can be subgrouped even

further by "phage type". This technique uses the specificity of phage to

differentiate between extremely closely related bacteria. Often these bacteria are

indistinguishable by other means, and indeed, the reasons for the differences in

phage specificity are often not known.

• Salmonella enterica serovar typhi (also called Salmonella typhi or

abbreviated to S. typhi). This bacterium is the causative agent of typhoid

fever. Although typhoid fever is not widespread in the western world, it is

very common in under-developed countries, and causes a serious, often-

fatal disease. The symptoms of typhoid fever include nausea, vomiting,

fever and death. Unlike the other Salmonellae discussed below, S. typhi can

only infect humans, and no other host has been identified. The main source

of S. typhi infection is from swallowing infected water. Food may also be

contaminated with S. typhi, if it is washed or irrigated with contaminated

water.

• Salmonella enterica serovar typhimurium (also called Salmonella

typhimurium or abbreviated to S. typhimurium). Until recently the most

common cause of food poisoning by Salmonella species was due to

S. typhimurium. As its name suggests, it causes a typhoid-like disease in

mice. In humans, S. typhimurium does not cause as severe disease as

S. typhi, and is not normally fatal. The disease is characterised by

diarrhoea, abdominal cramps, vomiting and nausea, and generally lasts up

to seven days.

• Salmonella enterica serovar enteritidis (also called Salmonella enteritidis

or abbreviated to S. enteritidis). In the last 20 years or so, S. enteritidis has

become the single most common cause of food poisoning in the United

States (phage type 8) and Europe (phage type 4) [16]. S. enteritidis causes a

disease almost identical to the very closely related S. typhimurium.

S. enteritidis is particularly adept at infecting chicken flocks without

causing visible disease, and spreading from hen to hen rapidly, hence the

2: Cell Physiology and Sterilisation Methods

- 24 -

interest in this particular serovar for this study. When tens or hundreds of

thousands of chickens live together, and are slaughtered and processed

together, a Salmonella infection can rapidly spread throughout the whole

food chain. A compounding factor is that chickens from a single farm may

be distributed over many cities and even countries, and hence Salmonella

infections can be rapidly dispersed through millions of people. Thus, the

possibility of treating hatching eggs at source to eradicate surface borne

bacteria in a clean and safe way is of great interest. S. enteritidis has

become the predominant cause of salmonellosis in recent years, overtaking

S. typhimurium as the main causative agent [18].

Salmonella bacteria have been known to cause illness for over 100 years.

Salmonellosis, or a Salmonella infection, is the illness that can occur if live

Salmonella bacteria enter the body, usually through eating foods containing the

bacteria. Salmonellosis is one of the most common bacterial food-borne illnesses.

Two types, Salmonella enteritidis and Salmonella typhimurium, account for

approximately half of all human infections. Strains that cause no symptoms in

animals can make people sick, and vice versa. If present in food, it does not affect

the taste, smell, or appearance of the food. The bacteria live in the intestinal tracts

of infected animals and humans.

After Salmonella is ingested, it passes through the stomach to the intestine. Here,

it binds to the wall of the intestine, and through special proteins that it generates in

response to the particular conditions in the intestine it penetrates the intestinal

wall. From here it can find its way to the liver or spleen. For most other bacteria,

this journey would kill them, however Salmonella has evolved mechanisms to

prevent the immune system from doing its job efficiently. In the liver, Salmonella

can grow again, and be released back into the intestine.

Of course, not all of the Salmonella pass through the intestinal wall, and many of

them are expelled from the intestine in the diarrhoea. In regions with poor

sanitation, these bacteria can than survive in the soil or in rivers and infect the

next person, cow, chicken or mouse that comes along.

2: Cell Physiology and Sterilisation Methods

- 25 -

A person infected with the Salmonella enteritidis bacterium usually has fever,

abdominal cramps, diarrhoea, nausea, vomiting, and headache beginning 6 hours

to 48 hours after consuming a contaminated food or beverage. The illness usually

lasts 2 days to 6 days, depending on host factors, ingested dose, and strain

characteristics. Most people recover without antibiotic treatment. However, the

diarrhoea can be severe, and the person may be ill enough to require

hospitalisation. Chronic consequences may include arthritic symptoms 3 weeks to

4 weeks after the onset of acute symptoms. The infective dose may be as few as

15 to 20 bacterial cells; dependant upon age and health of the host, and strain

differences among the members of the genus.

The elderly, infants, and those with impaired immune systems may have a more

severe illness. In these patients, the infection may spread from the intestines to the

blood stream, and then to other body sites and can cause death unless the person is

treated promptly with antibiotics.

2.2.2 Viruses

The origin of the word virus is derived from Latin, which literally translates to

poison. A definition of a virus suggested by Lwoff is "Viruses are infectious,

potentially pathogenic nucleoprotein entities, with only one type of nucleic acid,

which reproduce from their genetic material, are unable to grow and divide, and

are devoid of enzymes" [11].

While viruses have undoubtedly been around for thousands of years, the first virus

to be studied was the mosaic virus affecting tobacco plants. This particular virus,

known as tobacco mosaic virus (TMV) was studied carefully in the late 1800s

when in 1892, Iwanowski came to the considered conclusion that the virus was

non-corpuscular - i.e. that it was not cellular and was much smaller than a cellular

organism [13]. The actual size of this virus is 300 nm by 15 nm by 22 nm [11]. This

was also the first successfully isolated virus, achieved by W. M. Stanley in

1935 [11].

2: Cell Physiology and Sterilisation Methods

- 26 -

Table 2.5 outlines the comparative sizes and morphologies of some common

viruses [11].

Table 2.5: Comparative sizes and morphologies of common viruses.

Virus Morphology Size (nm)

Foot and mouth disease virus Spheroidal 8 to 12

Tobacco necrosis virus Spheroidal 17

Poliomyelitis virus Spheroidal 28

Tobacco mosaic virus Rod 300 × 15

Influenza virus Spheroidal 80

Tomato bushy stunt virus Spheroidal 30

Turnip yellow mosaic virus Spheroidal 22

Rabbit papilloma virus Spheroidal 45

Cowpox virus (smallpox vaccine) Brick shaped 28 × 22

Chicken pox and shingles virus Brick shaped 290 × 230

Escherichia coli phage Head

Tail

95 × 65

100 × 25

Virology, the study of viruses, has progressed rapidly in recent years, particularly

with the invention of the electron microscope and negative staining techniques.

These have enabled virologists to study the sub-microscopic viruses from a new

viewpoint, as the most common factor of all viruses is their small size (of the

order of tens of nanometres), beyond the capabilities of optical microscopes, as

can be seen from Table 2.5.

2: Cell Physiology and Sterilisation Methods

- 27 -

Viruses on their own cannot multiply, but rely entirely on the metabolic processes

of a host cell. The host cell is also the means by which the virus can be introduced

into other organisms. Viruses are obligate intracellular parasites, a fact, which

explains why no virus has ever been cultivated on a cell-free medium.

The chemical constitution of viruses can contain just a nucleic acid core and a

protein coat, or capsid. The nucleic acid may take the form of either RNA

(ribonucleic acid) or DNA, and can form from 1 % to 40 % of the virus [11]. In

most viruses, the nucleic acid is the infective agent with the protein forming a

protective covering for the acid. Many viruses can behave as chemicals and be

crystallised. Viruses themselves do not perform metabolism, they are replicated

inside the host cell by synthesis of their component parts, followed by their

assembly into the full virus particle.

The replication mode of viruses is similar for all viruses, with the virus particle, or

virion, entering a cell and its nucleic acid taking over control of the cellular

metabolic processes. This in turn codes for the separate synthesis of the viral

nucleic acid and protein, which are later combined into a new virus particle. The

nucleic acid is manufactured in the nucleus of the host cell and the proteins in the

host cell's cytoplasm. The virus yield from a cell varies, but is typically from 10 to

100 particles [11].

Some virus particles have a very limited survival outside of the normal host cell,

for example only a few hours. Others however, are extremely stable and can

withstand heat, cold and drought that would kill many vegetative bacteria. Viruses

are resistant to antibiotics and many disinfectants, but can be destroyed by

oxidising agents such as hydrogen peroxide and hypochlorites.

To infect higher organisms a virus needs a vector to help transmit it from the host

organism to the new organism, as they themselves are not motile. Such vectors

include insects, as in mosquitos transmitting viral infected blood from one animal

to another. Other viruses can be transmitted by physical vectors, such as spray

droplets from a sneeze carrying the influenza virus.

2: Cell Physiology and Sterilisation Methods

- 28 -

2.2.3 Fungi

Fungi can vary greatly in complexity and size and include mushrooms, yeasts and

moulds. However, this study is only interested in the smaller micro-organisms that

are fungi.

Fungi are a member of the higher protists and as such have a nucleus that is

surrounded by a membrane, compared to the bacteria that do not. A few very

simple fungi are unicellular, such as yeasts. Most however, form long slender

filaments called hyphae, which usually branch freely forming a flocculent mass

named the mycelium. Most fungi are non-motile, but a few can produce motile

cells.

Fungi occupy a wide variety of habitats. Some are aquatic, but the vast majorities

occupy moist conditions on land. A few species however can withstand much

dryer conditions, for example, Aspergillus and Penecillium. Fungi are either

saprophytic, i.e. feeding on non-living organic matter, or parasitic, feeding on

living organic matter.

Vegetative cells and spores of nearly all fungi are surrounded by a definite cell

wall. In most fungi, these cell walls consist of 80 % to 90 % polysaccharides

(sugars) together with proteins and other compounds [12].

The common propagative units of fungi are single celled spores. These may be

produced sexually or asexually. These spores are much less resistant to attack than

the equivalent bacterial spores. Some fungal spores may only be able to survive in

normal conditions for only a few hours if they have not found a suitable host [12].

2: Cell Physiology and Sterilisation Methods

- 29 -

Some fungi such as Oomycetes can have flagella and are therefore motile. These

flagella are larger and more complex than those of the bacteria. Each flagellum is

made of 11 distinct parallel filaments, two of which are centrally placed, the

remainder being peripheral. Fungi typically have two forms of flagella, whiplash

and tinsel. Whiplash have 11 strands in which the central pair extend to form the

end of the lash. The tinsel flagella are covered with a very fine fur of short slender

threads [12].

2.3 Current Sterilisation Methods

There are many varied approaches to sterilisation dependent on the industry in

which the application is being used and the degree of sterilisation that is required.

For example, surgical instruments in hospitals have to be extremely clean, but a

relatively low throughput of items is required. However, the commercial food

packing industry requires an extremely high throughput, but the sterilisation

requirements are not as stringent as those of medical facilities.

For the purposes of sterilisation of surgical instruments, the absolute level of

sterilisation needs to be very high and reproducible. The desired sterilisation is

defined as the Sterility Assurance Level (SAL), where the SAL is the probability

of a viable micro-organism surviving on a given substrate. In general, a SAL of

10-6 is required for aseptic packaging materials and single use disposable medical

devices. That is, there is a probability of not more than one viable micro-organism

surviving in one million units [19].

Micro-organisms can only survive within certain environmental conditions such

as pH, temperature and osmotic pressure. Outside of the optimal conditions the

bacteria may survive, but may not be able to grow or reproduce. Increasing the

limits further from the optimal will eventually result in death of the bacteria.

2: Cell Physiology and Sterilisation Methods

- 30 -

Before describing the various methods of sterilisation, some form of measurement

of the effectiveness of these actions is required. Various measures of the

effectiveness of lethal agents are used, with three common ones being:

• LD50 the dose needed to kill 50 % of the individual cells of a culture [13].

• The log method expresses the relative proportion of bacterial kill in a

logarithmic fashion. For example, if 90 % of a bacterial culture is killed

with 10 % remaining, this can also be expressed in relative terms as a kill

rate of 0.9 of the bacterial culture with 0.1 remaining. Taking the base 10

logarithm of the remaining bacterial level (0.1) and ignoring the sign of the

result will give the log kill. In this example, log10 (0.1) is -1 giving a 1 log

kill. Similarly, a kill rate of 99.9 %, can be expressed in terms as a 3 log

kill. In this method each increment in the log kill represents an order of

magnitude (or decimal) reduction of the bacterial culture.

• Following on from the log method, the D value is the time taken to achieve

a 90 % (1.0 log) reduction in the number of viable cells in a culture. This

value gives an indication of the relative efficiency of a given sterilisation

dose. The lower the D value, the more effective the sterilisation dose [16].

The following list details some current sterilisation methods. Each item will be

subsequently dealt with in detail in the following sections of this chapter.

2: Cell Physiology and Sterilisation Methods

- 31 -

• Temperature

− Dry Heat

− Moist Heat (Autoclaving)

− Cold

• Desiccation

• Cellular Disintegration

• Chemical Disinfectants

• Light

− White Light

− Ultra-violet Light

− Laser Light

• Plasma

• Electric Fields

• Ionising Radiation

2.3.1 Heat

Heat is a widely used and very effective sterilising agent for micro-organisms.

Heat will not leave any contamination and can be used wherever the heat will not

have any adverse effect on the item being sterilised.

The effect of heat in sterilisation is directly related to the temperature and the

duration of its application [13]. Figure 2.5 shows the effect of dry heat temperatures

on Escherichia coli for different treatment times. A convenient term for this

analysis is called the "thermal death time". This is the time required at a given

temperatures to kill a given culture, and will vary from bacteria to bacteria.

2: Cell Physiology and Sterilisation Methods

- 32 -

 Fig. 2.5: Mortality effect of different temperatures on E. coli at pH 7.

2.3.2 Dry Heat

Dry heat is not the normal preferred method of sterilisation by heat, due to the

increased length of exposure time compared to moist heat. It is however

sometimes necessary when items to be sterilised cannot be subjected to moisture.

With dry heat sterilisation methodologies, the heat is transferred to the micro-

organisms via convection, radiation and conduction. A continuous dry heat of

160 °C for 60 minutes is the considered requirement for efficacious sterilisation.

This will kill all bacteria plus the more resistant bacterial spores. A lower

temperature of 100 °C for 60 minutes will kill non-sporing bacteria but not the

sporing varieties.

1

1.5

2

2.5

3

3.5

4

47 48 49 50 51 52 53 54 55
Temperature (Degrees C)

Lo
g

tim
e

(m
in

ut
es

) t
o

ca
us

e
99

.9
9%

m

or
ta

lit
y

2: Cell Physiology and Sterilisation Methods

- 33 -

2.3.3 Moist Heat (Autoclaving)

Autoclaving is the common method for sterilisation of surgical instruments used

in the medical industry.

Autoclaving uses moist heat to perform sterilisation. Moist heat is more efficient

than dry heat, sterilising at lower temperatures and shorter durations. Table 2.6

shows a comparison of the sterilisation times and temperatures between moist

heat and dry heat.

Moist heat is more efficient than dry heat since steam will provide rapid heat

transfer to items being sterilised. On condensing on a cold object, the steam will

give up its latent heat of vaporisation, but the partial vacuum created by this

process will also contribute to sucking more steam to the object.

Table 2.6: Equivalent minimum sterilising temperatures in moist / dry heat.

Moist Heat Dry Heat

Pressure †

(PSI)

Temperature

(°C)

Sterilising time

(minutes)

Temperature

(°C)

Sterilising time

(minutes)

0 100 1200 - -

5 109 150 - -

10 115 50 - -

15 121 15 120 480

20 126 10 - -

30 134 3 140 150

- - - 160 60

- - - 170 25

- - - 180 10

† Pure steam.

2: Cell Physiology and Sterilisation Methods

- 34 -

The relationship between the temperature of steam obtained and the system

pressure is directly related to the vapour pressure of water. The boiling point of a

liquid is obtained when the liquid's vapour pressure is equal to the local

atmospheric pressure. Thus, when the local atmospheric pressure is increased, the

water requires heating to a greater temperature to raise its vapour pressure until

boiling point is reached and steam is produced [20].

A typical autoclave system will generate an internal temperature of 121 °C under

a pressure of 15 psi. The heat generated is not a dry heat, but via heated steam

generated from distilled water fed into the system prior to operation. These

conditions are maintained for approximately 30 minutes, after which the items

contained within the autoclave can be considered sterilised. The minimum quoted

for these conditions are 15 minutes, but 30 minutes is considered the best practical

time to include a reasonable safety margin.

2.3.4 Cold

Cooling bacterial cultures will kill a proportion of the cells, depending on the

cooling procedure used. Some moulds and yeasts are more resistant to freezing

than most bacteria, although bacterial spores are almost unaffected due to their

virtual absence of free water.

The predominant process for denaturation by freezing is the formation of ice

crystals within the cells causing mechanical damage, or the precipitation of

coagulable cellular proteins. This latter effect is more prevalent at -2 °C than at

lower temperatures. Hence, the death rate of cells is found to be greatest at

temperatures just below freezing.

The rate at which cooling occurs is also important. For example, a cold shock

caused by rapidly cooling Escherichia coli cultures from 37 °C to 4 °C produced a

95 % reduction in viable cells, whereas the same temperature drop produced over

30 minutes showed no loss of viability [13].

2: Cell Physiology and Sterilisation Methods

- 35 -

2.3.5 Desiccation

When drying, some loss of viability occurs in all micro-organisms, with bacterial

spores being the least effected due to their lack of free water. A water content

reduction to 30 % to 40 % is considered the most harmful to cells [13].

When dried and left, the period of survival of bacterial cells can range from a few

hours for the most susceptible to months for the more resilient.

2.3.6 Cellular Disintegration

Micro-organisms can be disintegrated by ultrasonic or mechanical agitation.

Ultrasound, at frequencies of the order of 700 kHz, is only effective on micro-

organisms in liquid suspension [13]. Apart from the minimal heating effects of the

sound waves, the main bactericidal function of ultrasound is almost entirely

attributed to the physical destruction of the cells. The effect seems more related to

the intensity of the incident sound waves rather than their frequency.

Gram-negative bacteria are generally more resistant to this type of effect (due to

their stronger cell walls), as are bacterial spores (due to their virtual absence of

free water).

In addition to cellular disintegration via ultrasound, this can also be achieved by

means of mechanical agitation of the bacteria in the presence of abrasives (e.g.

carborundum), or alternatively, shearing forces brought about by forcing a liquid

or frozen suspension through a narrow opening.

Mechanical methods of cellular disintegration do not have the same associated

heating effects as with ultrasound methods.

2: Cell Physiology and Sterilisation Methods

- 36 -

2.3.7 Chemical Disinfectants

Chemical disinfectants can come in the form of both gases and liquids and are

many and varied. Some of the major types of chemical disinfectants in use are:

• Halogens

• Alkylating Reagents

• Phenolic Compounds

• Aldehydes

• Alcohols

• Acids and Alkalis

• Heavy Metals and Their Salts

Each of the above topics will now be briefly discussed:

2.3.7.1 Halogens

Halogens or compounds that produce them are highly bactericidal via the action

of oxidation of proteins and similar substances within the bacterial cells.

As a direct result of their method of action, prolonged action on bacterial cultures

will dilute their effectiveness and hence limit their usefulness. Bleaches are

examples of halogen disinfectants.

2: Cell Physiology and Sterilisation Methods

- 37 -

2.3.7.2 Alkylating Reagents

Such compounds as ethylene oxide are highly effective bactericidal agents

through their ability to alkylate bacterial structures. The gas ethylene oxide will

effectively kill bacterial spores and is in common use as a sterilising agent.

To avoid the risk of explosion, this gas is often mixed with an inert gas under

pressure at a standard humidity and temperature. This method is widely used in

industry for sterilisation because of the extremely penetrating properties of

ethylene oxide.

2.3.7.3 Pheonolic Compounds

These reagents are extremely toxic by virtue of their action of protein

denaturation. Proteins are precipitated by only 1 % to 2 % phenol. However, none

of these chemicals are capable of killing bacterial spores. Most vegetative bacteria

for example are killed by 1 % phenol in 5 minutes to 10 minutes at 20 °C, but

anthrax spores survive 24 hours in 5 % phenol [13].

Halogenated phenols are much less toxic than phenols and suffer the same

reduction of effectiveness as other halogens agents. This group of substances

includes "Dettol", which is a chloroxylenol.

2.3.7.4 Aldehydes

Formaldehyde, often sold as a 40 % aqueous solution known as formalin, is able

to kill bacterial spores even in concentrations as low as 1 %. Hence, this can

achieve complete sterilisation, but will also remain toxic to other organisms for

long periods.

2: Cell Physiology and Sterilisation Methods

- 38 -

In the form of a gas or solution, it is slow to penetrate into the bacterial cells, but

is highly efficient.

Other aldehydes utilised for sterilisation include 2 % aqueous solution of

glutaraldehyde, which is less irritant than formalin, but more rapidly bactericidal.

2.3.7.5 Alcohols

Alcohols kill vegetative bacteria very rapidly but have no action on bacterial

spores. This is because their action requires the presence of water. Pure alcohol is

less effective than a more dilute concentration, with 70 % being optimal.

Isopropyl alcohol has been found to be slightly more effective than ethyl alcohol.

2.3.7.6 Acids and Alkalis

Mineral acids and alkalis produce their main action on bacteria via their hydrogen

and hydroxyl ions respectively. Hydrogen ions have been found to be more

effective than hydroxyl ions.

2.3.7.7 Heavy Metals and Their Salts

All of the heavy metals are bactericidal and fungicidal to some degree. Silver and

copper exhibit these properties at minute concentrations, a property referred to as

oligodynamic activity.

The salts and organic complexes of mercury, tin, silver and to a lesser degree

copper are all bactericidal. When ionised in an aqueous solution the metal ions

combine with and precipitate cell proteins.

2: Cell Physiology and Sterilisation Methods

- 39 -

2.3.8 White Light

Light will only have an effect on a bacterial cell if it is absorbed. If the light

passes straight through the cell, then it will have no effect. The absorption of light

can promote chemical changes within a bacterium and hence cause biological

damage.

Light in the visible wavelength regions of 400 nm to 750 nm is absorbed by

relatively few compounds found in bacteria, and will hence have little bactericidal

effect. This is also true of ultra-violet light in the 300 nm to 400 nm region, below

that however, effects are noted. These will be described more fully in the next

section on ultra-violet light.

Visible light can be utilised to sterilise micro-organisms, but only with the

addition of a photo-sensitising dye such as erythrosin [13]. Such dyes are said to

posses photodynamic action. The addition of such dyes allows the visible light to

promote the creation of cytotoxins, which subsequently kill the cell.

White light sterilisation systems have been proven to operate as efficient

bactericidal systems, however, most of the bactericidal effect is found from the

ultra-violet light within the broad spectrum of white light. The ultra-violet light

can account for up to 25 % of the luminous energy emitted from an inert xenon

gas flash lamp.

An embodiment of a flash lamp, white light sterilisation system has been

demonstrated by PurePulse Technologies Incorporated, San Diego [21]. This

system uses 200 µs to 300 µs pulses of white light from low-pressure xenon flash

lamps at rates of 1 Hz to 20 Hz. The spectra of light emitted from these lamps

ranges from the far ultra-violet (200 nm) to the infrared (1 100 nm), with the

typical distributions being 25 % ultra-violet, 45 % visible and 30 % infrared. All

of these radiations are non-ionising.

2: Cell Physiology and Sterilisation Methods

- 40 -

While the peak powers of the individual pulses are extremely high because of

their short duration, the total energy in every pulse is relatively low. The energy

density provided on the products being sterilised from these systems is in the

range of 1.5 J·cm-2 to 4 J·cm-2 [22]. These energy densities are typically 20 000

times more intense than the natural radiation energy density of the sun on the

earth [21]. Due to the short duration of these pulses, there is minimal heating effect

on any items being sterilised.

The kill rate of the above system has been shown to achieve 9 log per colony-

forming units (CFUs) per cm2 on vegetative organisms and 6 log CFUs·cm-2 on

bacterial spores (both on smooth surfaces) [21]. Reduced rates of about

2 log CFUs·cm-2 to 3 log CFUs·cm-2 are typical on porous surfaces, where certain

areas of the article being sterilised may be in shadow from the incident light. The

system has proved efficacious in the treatment of vegetative bacteria, yeasts,

moulds, bacterial spores and viruses.

2.3.9 Ultra-violet Light

Ultra-violet radiation of wavelength less than 300 nm is strongly absorbed by

proteins and nucleic acids. Relatively small doses of this form of radiation can

bring about chemical changes in these compounds causing chromosome damage,

genetic mutation or death. Higher dose levels are required to inactivate enzymes

however [13].

In some micro-organisms, the harmful consequences of exposure to ultra-violet

light can be partly averted by subsequently exposing them to visible light. This

process is known as photoreactivation. An example of a bacterium containing a

photoreactivating enzyme is Escherichia coli.

2: Cell Physiology and Sterilisation Methods

- 41 -

There exists a maximum absorption of ultra-violet radiation in DNA at 260 nm,

thus resulting in maximum DNA damage when irradiated with this specific

wavelength of ultra-violet light [23]. Additionally, polychromatic ultra-violet light

can be more a more efficient bactericide than monochromatic light due to the

photoreactivation mechanisms of certain bacteria.

Ultra-violet light has very poor penetration into cells, but is still an effective

sterilising agent. Germicidal ultra-violet lamps can be used for low levels of

sterilisation. One such example is a quartz-mercury vapour lamp. Typical

examples of these germicidal lamps operate in the UV-C band (200 nm to

280 nm) at wavelengths of 253.7 nm (very close to the maximum absorption of

ultra-violet radiation in DNA at 260 nm). The powers of these lamps are typically

in the tens of Watts. Such a lamp can achieve up to 4.5 log reduction in CFUs in

10 s on Aspergillus niger spores [21].

Typical doses of these lamps range from 500 W·s-1·cm-2 to 150 000 W·s-1·cm-2 to

achieve a 90 % (1 log) kill rate. An example for the Escherichia coli bacteria in

air is 690 W·s-1·cm-2 and in water 5 400 W·s-1·cm-2. The high absorbency of the

ultra-violet light in water can be clearly seen from these figures. This is the same

reason for the poor penetration into cells, as the cells are typically 80 % water.

The following section on laser light also contains lasers that generate ultra-violet

light at fixed frequencies (monochromatic). The dose levels found with laser

system however, can be significantly higher that those generated by conventional

lamps.

2: Cell Physiology and Sterilisation Methods

- 42 -

2.3.10 Laser Light

The use of laser light to obtain bactericidal effects will be explained in detail in

the next chapter. This section will give a brief outline of the potential uses of laser

light for this goal.

Both white light and ultra-violet light have been discussed with a view to

promoting bactericidal effects. Laser systems offer a mechanism for providing

exceptionally high energy densities of monochromatic wavelengths of light.

Moreover, these high energy densities can be readily directed to various target

sites.

Laser wavelengths cover the entire visible spectrum and extend into the ultra-

violet and infrared portions of the electromagnetic spectrum. Previous methods

discussed with ultra-violet light can also be accomplished with lasers. Lasers

producing light in the visible spectra can also be used with additional chemicals to

help produce cytotoxins. High-powered lasers in the infrared portion of the

spectrum produce light that is highly absorbed in water. As cells are 80 % water,

this portion of the spectra is extremely useful. Infrared effects will tend to be

thermally based compared to the ultra-violet light effects that break the bonds of

molecules directly.

Table 2.7 shows a list of lasers that have undergone trials for bactericidal effects.

2: Cell Physiology and Sterilisation Methods

- 43 -

Table 2.7: Laser types test for bactericidal effectiveness.

Laser Wavelength

Far-Infrared (FIR) 118 µm

Carbon Dioxide 10.6 µm

Er:YAG 2.94 µm

Nd:YAG 1.06 µm

Ruby 694 nm

HeNe 632 nm

Frequency Doubled Nd:YAG 532 nm

Frequency Tripled Nd:YAG 355 nm

Laser Diode Array 810 nm

Argon Ion 488 nm

ArF Excimer 193 nm

Not all of the above lasers have proven efficacious in the sterilisation of bacteria.

The Laser diode array, FIR, argon ion, ruby and helium neon (HeNe) lasers do not

appear to be very promising from initial research trials [3], [7]. Although with the

addition of photosensitising agents, the efficiency of some of these lasers can be

increased [24], [25].

Lasers will be covered in detail in the subsequent sections of this thesis.

2: Cell Physiology and Sterilisation Methods

- 44 -

2.3.11 Plasma

Plasma technologies have been investigated for the past twenty years or more, but

it was not until 1995 that a method of plasma sterilisation of medical devices was

clearly demonstrated [26].

A plasma in general terms is a gas, in which charged ions exist, and in which

some of the atoms, molecules or molecular fragments are electrically charged.

Such examples of naturally occurring plasmas are lightning. These plasmas are

typified by their characteristic high energy and high temperature discharges.

The use of low temperature plasmas for sterilisation purposes is akin to other

more common low temperature plasmas embodied in fluorescent and neon

lighting, facilitated by the use of vacuums. The use of low temperatures to create

these plasmas will enable a range of products to be sterilised that would otherwise

be adversely affected by high temperature sterilisation methods.

A typical plasma sterilisation procedure involves a two-stage process. The first

stage requiring the exposure of the materials to be sterilised to a vapour created

from a peroxygen compound, for example hydrogen peroxide. The second stage

of the process involves exposing the material to be sterilised (and the peroxygen

compound) to a low temperature glow discharge gas plasma. This process

generates biocides from the peroxygen compound.

The use of peroxygen compounds is specified, as following the sterilisation

process the compounds revert to non-toxic by-products, such as water and oxygen

in the case of hydrogen peroxide.

The mechanism for bacterial kill is thought to be the oxidation of the cellular

membranes.

2: Cell Physiology and Sterilisation Methods

- 45 -

2.3.12 Electric Fields

The damaging effects of high energy, 10 kV, electric fields on Escherichia coli

have been recorded as long ago as 1967 [27]. More recent studies have concluded

that the voltage potential threshold across a cell's membrane, in order to kill the

cell is 1 V [27]. Based on this principle, a commercial system is now available and

supplied by PurePulse Technologies Incorporated, called Coolpure [22].

This process kills high levels of vegetative micro-organisms through massive

electroporation, or rupturing, of the bacterial cell membranes and can kill

vegetative bacteria in pumpable liquids, held at temperatures between 25 °C to

60 °C, with virtually no chemical change in the product being sterilised. Being

operated at low temperatures, foodstuffs that are normally processed using high

temperature pasteurisation, can now be processed at lower temperatures, without

significantly affecting the taste of the product compared to high temperature

methods [22].

This system uses short high-energy pulses to rupture the bacterial cell walls. Such

a system can provide 1 pulse to 20 pulses per second. Each pulse is between 1 µs

to 10 µs in duration, with an electric field strength of 20 kV·cm-1 to 80 kV·cm-1.

The treatment parameters can be varied, together with the duration of the liquid

product in the system, by varying its flow.

Effective treatment of raw milk has been demonstrated [22] at 55 °C with bacterial

kill levels in excess of conventional pasteurisation methods. In tests with Listeria

innocua as a substitution for Listeria monocytogenes, greater than 6 log were

killed with only a few seconds exposure at 55 °C.

Extensive chemical analyses by the manufactures of this process have shown that

no changes in the chemical or physical properties of treated milk have been

observed. This analysis included enzyme activity, fat integrity, starter growth,

rennet clotting yield, cheese production, calcium distribution, casein structure and

protein integrity.

2: Cell Physiology and Sterilisation Methods

- 46 -

2.3.13 Ionising Radiation

The effects of ionising radiation have been well documented on cells since

Roentgen's discovery of x-rays in 1895 while performing experiments on

electrical discharges on cathode ray tubes. Roentgen is said to have exposed his

hand between the tube and phosphorescent plate and saw a shadow of his

bones [28]. Shortly after Roentgen's discovery, Becquerel discovered similar

radiations emitted by uranium ores, and Professor and Madame Curie succeeded

in isolating the radioactive element radium.

Soon after the discovery of radiation emitted by uranium, Becquerel is said to

have "burnt" himself while carrying some uranium in his pocket. Hence the two

key properties of these new forms of radiation were soon discovered; the highly

penetrating nature of the radiation on biological tissues, and their harmful effects

to the aforementioned. It is interesting to note that nearly all of the pioneer

radiologists later died from cancer, indicating the harmful, yet delayed effects that

radiation can present.

Ionising radiation in the form of hard x-radiation, alpha (α) and beta (β) particles

and gamma (γ) rays of radioactive elements have sufficient energy to ionise an

atom and remove one of its electrons. The emitted electron will have a significant

amount of energy, which when in collision with another atom or molecule can in

turn ionise them. This is the secondary effect of ionising radiation.

The effect of the ionising radiation can be to change the DNA structure and

prevent the cell from reproducing, or alternatively, produce mutations that are

unable to survive in the existing habitat of the cell. A typical cell may have 4 000

genes, any of which may become mutated by ionising radiation. The effects of

which may vary depending upon the gene affected. Mutated housekeeping genes

can be catastrophic for a cell, while genes effecting cell wall protein production

may be less significant [29]. Figure 2.6 shows the process by which ionising

radiation can damage a cellular organism.

2: Cell Physiology and Sterilisation Methods

- 47 -

 Fig. 2.6: Development of radiation damage in cells.

Ionising radiation can fall into two categories, corpuscular (particulate) or

electromagnetic. Corpuscular radiations (alpha and beta) are streams of atomic or

sub-atomic particles moving at high velocities and hence have high kinetic

energies. Corpuscular radiations with energies of a few hundred electron volts are

all capable of producing ionisations. Electromagnetic radiations in the x- and γ-ray

wavelengths have sufficient energy to cause ionisations. More generally,

electromagnetic radiations that cause ionisations are called x-rays if they are

machine generated, or γ-rays if they are emitted from radioactive isotopes.

Radiation

Important
macromolecules

Other cell
components

Ionised
macromolecules

Ionised
molecules

Macromolecular
radicals

Free
radicals

Macromolecular
changes

Protective and
sensitising

agents

 Undamaged
macromolecule

Damaged
macromolecule

Normal cell Mutant cell Dead cell
Chromosome

damage

Physical stage
 ≤10-13 s

Chemical stage
≤10-6 s

Metabolic stage
103 s to 106 s

2: Cell Physiology and Sterilisation Methods

- 48 -

For commercial irradiating equipment, the cobalt 60 (60Co) isotope is the most

common source. This isotope has a half-life of 5.27 years. This isotope emits

highly penetrating gamma radiation. Sterilisation via this method will leave no

chemical residues on the items being sterilised. Doses of up to 25 kGray can be

achieved with these types of systems [19].

Table 2.8 gives an outline of some radiation doses from a cobalt 60 source for

typical sterilisation applications.

Table 2.8: Radiation doses for typical sterilisation procedures.

Typical Applications Dose kGray

Sterilisation of medical devices 25

Sterilisation of packaging systems 5 to 25

Sterilisation of laboratory supplies 5 to 25

Microbial decontamination 10 to 25

Bioburden reduction of cosmetic's raw materials 2 to 10

Preservation of antiques 2 to 10

Plastics modification (cross-linking and scission) 10++

Bioburden reduction of food ingredients 1 to 10

Note that Table 2.8 includes the time duration by definition of the dose in the

Gray unit. The Gray unit's dimension according to the SI system is L2T-2 [30].

2: Cell Physiology and Sterilisation Methods

- 49 -

2.4 Summary

The above chapter has conducted a review of micro-organisms, with particular

attention being focused on bacteria and more specifically Salmonella. Many

bacteria cause disease in humans and animals. These pathogenic bacteria cause

such diseases due to their direct or indirect production of toxins in the host

organism. One such example being the bacteria Salmonella enteritidis commonly

found on and in eggs causing Salmonellosis in humans.

Bacteria are single celled organisms, of the order of size of 1 µm and volume of

2 µm3. By way of comparison, a human hair has a diameter of approximately

100 µm. Being this small, bacteria cannot be seen with the naked eye, but may be

viewed using normal white light microscopy. Bacteria typically weigh about

20 × 10-7 g, 80 % of this weight being water. The small size of bacteria

contributes to their high surface area to volume ratio en mass. This helps their

metabolic process due to the rapid exchanges of substances across the cell walls,

but by contrast also can be used against the bacteria for sterilisation.

Bacteria have an optimum temperature for growth, at which (under ideal

conditions) they can reproduce at alarming rates. Above or below this temperature

growth rates will reduce and eventually stop. At extremes of temperature, the

bacteria will be killed. Gram-negative bacteria such as Salmonella are more

resilient to physical and chemical extremes than Gram-positive bacteria and are

hence harder to kill. Some bacteria can also form endospores, which have little

free water and can withstand both chemical and physical extremes. This effect is

triggered as a survival mechanism when environmental conditions become too

harsh for normal vegetative cells.

Having looked at the physiology of micro-organisms and bacteria in particular

there followed a discussion of a host of methods that can promote the sterilisation

of these bacteria. These individual methods are summarised below.

2: Cell Physiology and Sterilisation Methods

- 50 -

Heat: This method is widely used, very effective, leaves no contamination

and can be used wherever the heat will have little detrimental effect on the

item being sterilised. The sterilisation efficiency is directly related to the

temperature and duration of application.

Dry Heat: This requires an increased length of exposure time compared to

moist heat. It is sometimes useful when items to be sterilised cannot be

subjected to moisture. A continuous dry heat of 160 °C for 60 minutes is the

considered effective for sterilisation.

Moist Heat: (Autoclaving) is the common method for sterilisation of

surgical instruments and is more efficient than dry heat, sterilising at a lower

temperature in shorter durations. Sterilisation is typically achieved in

30 minutes at a temperature of 121 °C under a pressure of 15 psi.

Cold: Cooling has been shown to kill vegetative bacteria, with a faster rate

of cooling producing a greater degree of sterilisation. The predominant

process for this method is the formation of ice crystals within the cells

causing mechanical damage.

Desiccation: A water content reduction to 30 % to 40 % has been shown to

be the most effective for reduction of viability in vegetative bacteria.

Cellular Disintegration: Ultrasound at 700 kHz can disintegrate bacteria in

liquid suspension, with its efficiency being directly related to the

ultrasound’s amplitude. Mechanical agitation of bacteria in the presence of

abrasives, or shearing forces generated by forcing a liquid through a narrow

opening can also disintegrate bacterial cells.

Chemical Disinfectants: Chemical disinfectants used in both gaseous and

liquid forms, are extremely effective and in common usage. Some popular

examples being bleaches (halogen disinfectants), ethylene oxide gas,

formaldehyde and isopropyl alcohol. All of these chemicals act in slightly

different ways and will hence be used for different bactericidal purposes.

2: Cell Physiology and Sterilisation Methods

- 51 -

White Light: This can sterilise bacteria, however, most of the effect is due

to ultra-violet light accounting for 25 % of its spectrum [21]. Such systems

use xenon flash lamps pulsed at up to 20 Hz with pulse durations of 200 µs

and energy densities of around 4 J·cm-2 [22]. The short durations of these

pulses cause minimal heating of the items being sterilised. Kill rates of

9 log CFUs·cm-2 on vegetative organisms and 6 log CFUs·cm-2 on bacterial

spores have been achieved.

Ultra-violet Light: Ultra-violet light of wavelength 260 nm is strongly

absorbed in DNA [23], with relatively small doses causing sterilisation.

quartz-mercury vapour lamps are used for low levels of sterilisation,

operating in the UV-C band at wavelengths of 253.7 nm The powers of

these lamps are typically in the tens of Watts with doses of 500 W·s-1·cm-2

to 150 000 W·s-1·cm-2 achieving a 1 log kill rate.

Laser Light: Lasers produce high energy densities of monochromatic light

from the ultra-violet to infrared. Previous methods discussed with ultra-

violet light can also be accomplished with lasers. High-powered infrared

lasers produce light that is highly absorbed in water, where such effects are

thermally originated.

Plasma: This is a two-stage hybrid process using a low temperature plasma

and peroxygen compound (hydrogen peroxide), which following the

sterilisation process reverts to non-toxic by-products, such as water and

oxygen [26].

Electric Fields: These kill vegetative bacteria through the rupturing of the

cell membranes, with virtually no chemical change in the product being

sterilised. Such systems can operate at 20 Hz, with pulse durations of 10 µs

and electric field strengths of 80 kV·cm-1. Treatment of Listeria at 55 °C has

produced in excess of 6 log kill rates with only a few seconds exposure [22].

2: Cell Physiology and Sterilisation Methods

- 52 -

Ionising Radiation: This changes the cell’s DNA structure and prevents

reproduction, or causes death. Commercial systems commonly use the

cobalt 60 isotope, which emits highly penetrating gamma radiation [19].

Sterilisation via this method leaves no chemical residue on the items being

sterilised. Doses of up to 25 kGray can be achieved with these types of

systems.

Of the forms of sterilisation discussed, the heat and chemical disinfectant methods

are by far the most popular, with each method having its specific applications

suiting its method of biocidal action and side effects. Other methods such as ultra-

violet light and ionising radiation have their own niche applications but are less

common than the aforementioned methods. Of the remaining methods, some are

still in their commercial infancy (electric fields for example), while others have

the potential, but have yet to achieve commercial realisation – laser light for

example.

3: Laser Parameter Selection

- 53 -

3 : LASER PARAMETER SELECTION

3: Laser Parameter Selection

- 54 -

3.1 Introduction

The preceding chapter has discussed the basic cell physiology of bacteria, together

with a brief discussion of viruses and fungi. This has provided an insight into the

mechanisms for bacterial growth and reproduction, and the external influences

that can be brought upon them with an aim to reduce their viability.

The second part of the preceding chapter outlined a cross section of current

techniques for achieving these aims, using a broad range of methods and media.

The use of light (in particular laser light) was also briefly mentioned, this is now

expanded upon in this chapter.

This chapter investigates the use of lasers to promote the sterilisation of a host of

micro-organisms with a view to implementation on a commercial scale. The first

section of this chapter will look into the electromagnetic spectrum with the aim of

choosing the optimum wavelength for the treatment of bacteria, viruses and fungi.

Each wavelength will be analysed for its relative merits and practicality on a

commercial scale with a typical laser system required to produce the desired

wavelength.

In addition to a suitable wavelength for the sterilisation of micro-organisms, other

laser parameters can come under direct control that will help influence the

efficiency of the sterilisation method. These will be the optimisation of the laser's

temporal and spatial profiles.

The temporal profiles are more important for pulsed laser systems, but are also of

interest if continuous wave lasers are used with scanning technology to cover

large surface areas requiring treatment.

Spatial profiles refer to the quality of the laser beam. That is, throughout a given

laser spot, the energy may vary from point to point within the spot. These spatial

profiles are commonly called laser modes.

3: Laser Parameter Selection

- 55 -

3.2 Wavelength Selection

Lasers produce monochromatic light at selected wavelengths. The aim of this

section is to select an optimal wavelength for the sterilisation of micro-organisms

via laser, with the chosen laser being as practical as possible for commercial

applications.

Before looking at individual lasers, it is first wise to look at the electromagnetic

spectrum as a whole, with an analysis of different wavelength's properties with

relation to the sterilisation of micro-organisms. An investigation into the

generation of the specific wavelengths by different laser types will follow this

analysis.

3.2.1 Electromagnetic Spectrum

All waves within the electromagnetic spectrum have certain features in common;

one such is the relationship between their wavelength and frequency being a

constant, which is the speed of light in a vacuum [31]. This can be seen in

equation 3.1:

 c0 = νλ = 2.997 924 58 × 108 m·s-1 in vacuo (Equation 3.1)

 Where: ν is the frequency of the wave

 λ is the wavelength of the wave

 c0 is the speed of light in vacuo (constant)

Figure 3.1 shows the broad electromagnetic spectrum, covering the ranges from

the ionising radiation of γ- and x-rays through the light waves (ultra-violet, visible

and infrared) to microwaves and radiowaves [32].

3: Laser Parameter Selection

- 56 -

 Fig. 3.1: Electromagnetic spectrum from radiowaves to γ-rays.

The previous chapter has touched on the use of x- and γ -rays (ionising radiation)

as potential sources for sterilisation methods. Microwaves and radiowaves have

not been discussed previously, and are beyond the scope of this thesis, although

they can potentially be used for sterilisation, as in the use of microwaves to boil

water and cook food. Hence, if microwaves were used on living organisms (which

have a high percentage of water), sterilisation can be precipitated. The frequency

of microwaves most commonly used in domestic microwave ovens

2 450 MHz [27].

3: Laser Parameter Selection

- 57 -

Figure 3.2 expands upon the light portion of the electromagnetic spectrum from

ultra-violet to infrared light, which forms the basis of the continuing

discussion [32]. The bottom of figure 3.2 shows selected wavelengths for each

section of the electromagnetic spectrum in the light region.

 Fig. 3.2: Electromagnetic spectrum for light wavelengths.

As seen in the lower portion of figure 3.2, almost every portion of the light

spectrum is covered by a commercially available laser system. Table 3.1 shows a

brief list of some commercially available laser systems ranging from the infrared

portion of the spectrum to the ultra-violet [32], [23]. Against each laser is shown its

wavelength, the portion of the spectrum in which the light wavelength falls, the

photon energy of the particular wavelength and the typical effect of the photon

energy on biological organisms.

3.2.2 Photon Energies

The photon energies for a corresponding light wavelength can be calculated from

the following equation:

 E = hν (Equation 3.2)

 Where: ν is the frequency of the light wave

 E is the photon energy of the light wave

 h is plank's constant = 4.135 669 2 × 10-15 eV·s

3: Laser Parameter Selection

- 58 -

Table 3.1: Sample selection of commonly available laser types.

Laser Wavelength Colour Photon energy Interaction

CO2 10.6 µm Infrared 0.12 eV Photo-thermal

Er:YAG 2.94 µm Infrared 0.42 eV Photo-thermal

Ho:YLF 2.06 µm Infrared 0.60 eV Photo-thermal

Nd:YAG 1.06 µm Infrared 1.17 eV Photo-thermal

Diode 810 nm Infrared 1.53 eV Photo-thermal

Ruby 694 nm Deep red 1.79 eV Photo-thermal

HeNe 632 nm Red 1.96 eV Photo-thermal

Dye 585 nm Yellow 2.12 eV Photo-thermal

Cu vapour 578 nm Yellow 2.15 eV Photo-thermal

Nd:YAG (2nd) 532 nm Green 2.33 eV Photo-thermal

Argon Ion 488 nm Blue 2.54 eV Photo-thermal

XeF Excimer 351 nm Ultra-violet 3.53 eV Photo-chemical

XeCl Excimer 308 nm Ultra-violet 4.03 eV Photo-chemical

KrF Excimer 248 nm Ultra-violet 5.00 eV Photo-chemical

KrCl Excimer 222 nm Ultra-violet 5.58 eV Photo-chemical

ArF Excimer 193 nm Ultra-violet 6.42 eV Photo-chemical

F2 Excimer 152 nm Ultra-violet 7.90 eV Photo-chemical

H2 Excimer 110 nm to

162 nm

Ultra-violet 11.27 eV to

7.65 eV

Photo-chemical

Equation 3.1 can be rearranged for ν (frequency) and substituted into equation 3.2

giving equation 3.3 below. This can then be solved, giving photon energies for

known wavelengths of light, with the relative values substituted (equation 3.4):

3: Laser Parameter Selection

- 59 -

 (Equation 3.3)

 (Equation 3.4)

 Where: λ is the wavelength of light in metres

 E is the photon energy in eV

Table 3.1 showed corresponding photon energies for each specific laser

wavelength and the expected biological effect. These effects can be calculated

from the relevant molecular bond energies found between certain atoms in

biological molecules. Table 3.2 lists a range of typical bonds found in biological

organisms in proteins, and their bond energies [20].

Table 3.2: Common biological molecular bond energies.

Molecule Bond Energy (eV)

C-N 3.0

C-C 3.6

N-H 4.0

C-H 4.3

H-H 4.5

O-H 4.8

C=C 6.4

λ
0hcE =

λ

6104358421.239 −×=E

3: Laser Parameter Selection

- 60 -

From Table 3.2, it can be seen that certain energies are required to break specific

chemical bonds. The lowest bond energy in Table 3.2 is 3.0 eV for the carbon-

nitrogen bond. Referring back to Table 3.1, it can be seen that the first laser to

generate a short wavelength sufficient to break this bond is the XeF excimer laser

with a wavelength of 351 nm and a photon energy of 3.53 eV. This laser is in the

ultra-violet region of the spectrum.

Photon energies between 0.01 eV to 1 eV (generated from the infrared region of

the electromagnetic spectrum) cause increased rotational and vibrational activity

in molecules, which is manifested by the increase in heat in the compound being

irradiated [33]. Absorbed energies between 1 eV and 3 eV (in the visible and near

ultra-violet regions) will result in changes to the energies of the valence electrons

in molecules.

Energies between about 3 eV and 6 eV cause electronic excitation and molecular

dissociation in atoms and molecules (as in Table 3.2). Energies above about 6 eV

are those associated with ionising radiations such as x-rays. These energies are

typically above the normal bond energies found in common biological molecules.

3.2.3 Principal Radiation Effects

From the above, it can be seen that there are two predominant methods for the

precipitation of sterilisation via lasers; either photo-thermal or photo-chemical.

• Photo-thermal effects lie within lasers whose photon energies are not

sufficient to break the chemical bonds in typically occurring biological

compounds, but are sufficient to heat the compounds when absorbed in

such. These lasers form the visible and infrared part of the electromagnetic

spectrum. Their photon energies are less that 3.0 eV. There is a wide range

of laser types available in this portion of the spectrum to produce these

wavelengths and various power levels.

3: Laser Parameter Selection

- 61 -

• Photo-chemical effects lie within lasers whose photon energies are

sufficient to break the chemical bonds in biological compounds. These

lasers all lie in the ultra-violet portion of the electromagnetic spectrum

from approximately 400 nm and beyond. Their photon energies are greater

then 3.0 eV and are principally produced by excimer (excited dimer)

lasers [23].

3.2.4 Light Absorption

Only light absorbed by a molecule will have any effect on that molecule. Any

light that is reflected from the molecule’s surface or that passes straight through

will have no effect on the molecule and can be considered as wasted energy.

When light is absorbed by a molecule, the incident radiant energy is converted

into rotational and vibrational energy or an increase in the electronic state of the

molecule. The chemical structure of a molecule determines the specific

wavelength of non-ionising radiation that will be absorbed.

Results of much spectrographical research [33] have concluded that fully saturated

compounds do not absorb visible and near ultra-violet light, while compounds

containing unsaturated groups (multiply bonded atoms) absorb the longer

wavelengths of ultra-violet light. As the number of conjugated unsaturated groups

in a compound increase, there is a corresponding increase in the absorption of

longer wavelengths of light. The portion of a compound responsible for light

absorption is called a chromophore.

The effect of light absorption on a cell depends on the specific chemical

composition within the cell, that is, on the presence of absorbing molecules or

chromophores. The radiation must be absorbed within the cell for it to have any

effect on the cell. Molecules in excited electronic states have different chemical

and physical properties than those in ground states. These different properties can

3: Laser Parameter Selection

- 62 -

have profound effects on the viability of a cell and can be used to promote

biocidal action.

Nucleic acids and most cell proteins are essentially transparent to, and completely

transmit, visible light, but absorb certain wavelengths in the ultra-violet region

(between 250 nm and 295 nm) and can be damaged by this form of radiation [33].

Other macro-molecules in cells which appear coloured will absorb in the visible

spectrum of light and hence can be damaged by high intensity irradiation of these

wavelengths of light. For example, the absorption of ruby laser light (red) in

spirogyra to provide a bactericidal effect has demonstrated as early as 1963 [2].

Since the absorption of non-ionising wavelengths is determined by the chemical

composition of the organisms being irradiated, the more radiation that a molecule

absorbs, the greater the effect of the radiation.

3.2.5 Light Absorption in Water

As discussed in chapter 2, bacteria contain approximately 80 % water. Hence, the

absorption of specific wavelengths of light in water are of particular interest to

this study.

Water will only be heated by laser light that is absorbed by it. In order to raise the

temperature of 1 mm3 of water from typical body temperature to boiling point,

with subsequent vapourisation, 2.52 J of energy are required. This can be

calculated from the following:

By definition, the thermo-chemical calorie value is the amount of heat

required to raise the temperature of 1 g of water from 14.5 °C to 15.5 °C.

3: Laser Parameter Selection

- 63 -

This can also be defined by its Joule equivalent where:

 4.184 0 J = 1 calth (Equation 3.5)

Thus to raise 1 g of water from a body temperature of 37 °C to 100 °C will

require:

 4.184 0 J × 63 = 263.592 J

1 g of pure water is 1 cm3, which equates to 1 000 mm3. Therefore, to raise the

temperature of 1 mm3 water from body temperature to 100 °C will require:

The molar heat of vapourisation, is the heat required to vapourise 1 mole of

substance. The molar heat of vapourisation of water is 40.7 kJ·mol-1. The molar

mass of water is 18 g, That is, 1 mole of water weighs 18 g. Hence, 1 cm3 of water

weighs 1 g as the density of water is 1, therefore, 1 mm3 of water will weigh

1 mg. Hence, the amount of energy required to vapourise 1 mm3 of water at

100 °C will be:

J26.0
0001

592.263 =

J 26.2
000118
107.40 3

=
×

×

3: Laser Parameter Selection

- 64 -

In addition, the temperature of the water had to be raised to 100 °C from 37 °C,

which required 0.26 J, hence the total amount of heat required to vapourise 1mm3

of water is 2.52 J.

From the above discussion it can be seen that the majority of the energy is

required to vapourise the mass of water rather than to raise its temperature to

boiling point.

Clearly, only the light energy that is absorbed in the water will contribute to its

increase in temperature. Hence, the light wavelength that is most readily absorbed

in water is of especial interest, to make the most efficient use of available laser

power. Under normal conditions a percentage of light will not be absorbed in

irradiated water, hence the 2.52 J figure quoted above can be considered the

absolute minimum energy level from a laser system to vapourise 1 mm3 of water.

Figure 3.3 shows the light absorption graph for water [34]. In a homogeneous

medium the absorption coefficient is equal in magnitude to the inverse of the skin

depth δ. The skin depth being the distance over which an electromagnetic wave

(light in this case) will decay to 1/e (approximately 37%) of its incident value in a

conductive medium, and is described by equation 3.6.

 δs = (2/σµω)1/2 (Equation 3.6)

 Where: δs is the skin depth in metres

 σ is the conductivity in mohs/m

 µ is the permeability in henries/m

 ω is the angular frequency in radians/s

From equation 3.6 it can be seen that conductors (with a high value of σ) have a

shorter skin depth and consequently higher absorption than do insulators. Pure

water is a very good insulator, but as other substances are added to the water (such

as the key constituents found in a typical cell) the conductivity of the “water“ will

be expected to increase, with a corresponding increase in absorption.

3: Laser Parameter Selection

- 65 -

Figure 3.3 shows a complex absorption curve for water due to the composite

interactions of the vibrations and rotations of the water molecule. As impurities

are added to the water a general increase in absorption would be expected, but

with little chance of predicting the actual peaks and troughs of the resultant

absorption curve.

 Fig. 3.3: Light absorption in water plotted against wavelength.

Figure 3.3 shows that the lowest absorption of light in water is found in the visible

range of wavelengths from 400 nm to 700 nm, as would be expected because

water can be seen through. Below 400 nm, ultra-violet light is increasingly

absorbed. Above the visible range, in the infrared range, light is increasingly

absorbed, with various peaks. The highest absorption levels in water are all found

in the longer wavelengths, i.e. the infrared regions, which by nature have a photo-

thermal effect as previously discussed.

3: Laser Parameter Selection

- 66 -

From figure 3.3, it can be seen that there is an absorption peak at a wavelength of

approximately 3 µm. The closest laser to this is the Erbium YAG (Er:YAG) with

a wavelength of 2.94 µm. The absorption minimum of the graph is at

approximately 500 nm, which has a relative absorbency of approximately 10

million times less than the above peak at 3 µm.

The absorption of the ubiquitous carbon dioxide (CO2) laser, which has a

wavelength of 10.6 µm, is approximately 10 times less than that of the Er:YAG

laser. CO2 lasers are however significantly more efficient than Er:YAG lasers for

the following reasons. Er:YAG lasers generate their laser energy by imparting

high energy light into an Er:YAG crystal. This is typically done via broadband

white light generated by xenon flash-lamps. The typical efficiency of an Er:YAG

system is around 0.2 %, due to the nature of a large amount of waste light from

the flash lamps not being absorbed in the Er:YAG crystal. The CO2 laser

however, is typically 10 % efficient, as the means of excitation of the lasing

medium is more direct. The lasing medium in this situation is stimulated directly

by electrical means.

Ninety percent of the incident light of a given wavelength is absorbed in a certain

characteristic length, known as the extinction length. Essentially all of the energy

in the laser beam is deposited in one extinction length. A closely related and more

commonly used measure of absorption is the absorption length, which is the

length over which 63% of the light is absorbed. There are approximately 2.3

absorption lengths per extinction length. The absorption length of the CO2

wavelength is approximately 10 µm, while that of the Er:YAG is 1 µm. Hence,

their extinction lengths are 23 µm and 2.3 µm respectively. Laser light that is

absorbed by water heats the absorbing volume instantly (in a period of pico or

femto seconds) [34].

While water will typically absorb Er:YAG 10 times more efficiently than the CO2

laser, the CO2 lasers are typically 100 times more efficient than the Er:YAG

systems. Hence, the CO2 will be at worst equal in efficient use of power with

regards to heating water, and could theoretically be up to 10 times more efficient.

3: Laser Parameter Selection

- 67 -

A comparative disadvantage in using CO2, is that 10 times more energy will need

to be imparted into a substrate to heat the water contained in micro-organisms,

hence the substrate is likely to receive 10 times more energy. Different substrates

however may well absorb CO2 much less than the Er:YAG light, by a factor

greater than 10. In this case, the CO2 laser would be the preferable option.

A further practical consideration is the relative cost per Watt, and the maximum

energy obtainable from the individual laser types. In this respect, CO2 lasers will

prevail, as they are the most common form of laser used for industrial operations

and are typically much cheaper per Watt than other laser variants, and can offer

significantly higher powers than other technologies. For example, powers of 1 kW

are readily available with CO2 lasers.

Continuous wave (CW) lasers of high power are much easier to manufacture in

CO2 systems than flash-lamp pumped systems. This could also be a significant

benefit for commercial systems, as the product to be sterilised may pass through a

laser beam with a given relative velocity. If a pulsed laser source were used, areas

of the substrate may well be missed, by passing through the laser beam while the

beam is not on. This may only be a problem if the pulse repetition frequency is

not sufficiently high for a given product velocity.

From the previous chapter, the volume of a typical bacterium is approximately

2 µm3. 1 mm3 equates to 1 × 109 µm3, hence there could be up to 5 × 108 bacteria

in a 1 mm3 volume. Now if 2.5 J of energy were required to vapourise a 1 mm3

volume of water, 2.5 ÷ 5 × 108 would be required to vapourise a single bacterium,

i.e. 5.0 nJ.

If all the above bacteria were arranged on a planar substrate in a single plane, with

the typical height of bacterium being approximately 0.5 µm, the area covered by

5 × 108 bacteria would be 2 × 109 µm2, or 20 cm2. Thus, 2.5 J are required for an

area of 20 cm2, or in other words an equivalent energy density of 0.13 J·cm-2.

3: Laser Parameter Selection

- 68 -

The standard unit for energy density (or fluence) used in laser terminology is

J·cm-2, hence the above departure from standard SI units. The above calculation

makes some fundamental assumptions about the bacteria, such as that they are

uniform height and distribution and are 100 % water. However, this is a useful

approximation, giving the minimum amount of energy required to raise the

temperature of the bacteria to 100 °C and cause vapourisation.

Other factors not taken into consideration are; the thermal conductivity and

reflectivity of the substrate, the different chemical composition of bacteria, spores,

viruses and fungi, the ability for micro-organisms to form multiple layers on a

substrate and the relative absorption of laser light. All of these effects will

contribute to a general increase in the energy density required to kill a bacterium.

Conversely, the previous theoretical calculations assumed that all the bacteria

would be completely ablated (vapourised). However, only a single water vapour

bubble may need to be generated within a bacterium to compromise the cell’s

membrane and thus lead to the death of the cell. Furthermore, if simply raising the

cell’s temperature to 100 ºC is sufficient to kill the bacterium, then this would lead

to a great reduction in the energy required to promote sterilisation, as can be seen

from the previous calculations in this chapter. These differing kill mechanisms

may in turn contribute to a general decrease in the energy density required for

efficient sterilisation.

3.2.6 Wavelength Analysis

3.2.6.1 Visible light

From section 3.2.4 (Light Absorption), it is evident that visible light radiation is

not an optimal choice for sterilisation due to its poor absorption in some of a cell's

key constituent chemical components. Furthermore, section 3.2.5 (Light

Absorption in Water) shows that visible light is the least absorbed in water, which

typically forms 80 % of a micro-organism's mass (spores excepted).

3: Laser Parameter Selection

- 69 -

Past work with ruby lasers, producing visible deep red light at 694.3 nm, on

Gram-negative bacteria (Proteus vulgaris and Ps. aeruginosa) and Gram-positive

bacteria (Staphylococcus and Bacillus subtilis) has concluded that this particular

wavelength is not suitable as a bactericidal agent. Ruby energy densities of over

600 kJ·cm-2 showed no effects, nor did 2 hours of continuous exposure to a

0.5 mW HeNe laser focussed to a 1.5 mm spot (equating to 200 J·cm-2) [3].

Watson et al. [7] compared the bactericidal effects of seven different laser

wavelengths on Escherichia coli. The lasers in the visible spectrum used; argon

ion (488 nm) and frequency doubled Nd:YAG (532 nm) produced no bactericidal

effects.

3.2.6.2 Visible Light with Photosensitisation

However, visible light has been proved bactericidal, although to increase its

efficiency, photosensitising agents have to be added. On a commercial scale, it is

desirable to avoid chemical additives, as this is one of the primary reasons for

considering laser based sterilisation systems. Photosensitising agents could also

prove deleterious to potential substrates to be sterilised.

The addition of 0.01 % methylene blue chloride to stain the cell walls of spirogyra

algae, has permitted the ruby laser to puncture the cell walls with energy levels

that previously had no effect on the cell. Ruby laser light is deep red in colour,

hence the blue dye acts as the chromophore to absorb this light and cause

localised heating of the cell wall with subsequent vapourisation. Prior to the

addition of the photosensitising dye, energy densities of 300 J·cm-2 were required

to effect localised damage areas of 25 µm. After the addition of this dye, the

energy levels required to affect the same damage required only one tenth

(30 J·cm-2) of the energy prior to its addition. These were performed using a

pulsed ruby laser with a pulse length of 500 µs [2].

3: Laser Parameter Selection

- 70 -

The primary reason for the lower energy levels required to effect damage on a

spirogyra cell compared to the previous example in section 3.2.6.1 (Visible

light) [3] is probably due to the presence of a natural chromophore in the algae,

namely the chloroplasts, giving the algae the characteristic green hue.

Experiments performed with a 7.3 mW HeNe laser (632.8 nm, red) on the

bacterium Streptococcus sanguis highlighted three effective photosensitising

agents; methylene blue, azure B chloride and toluidine blue O at concentrations of

0.005 % (wt/vol). For each of these dyes, further experiments were performed on

oral bacteria Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans

and Fusobacterium nucleatum. For each case, biocidal action was observed to

exposure of laser light for 30 seconds. The effective energy doses for these effects

ranged from 2.75 J·cm-2 to 33 J·cm-2. Tests performed without the sensitising

agents showed no bactericidal activity [25]. It is interesting to note that all of the

above dyes stained the micro-organisms blue. The dyes also had peak absorption

close to the HeNe wavelength, thus acting as the chromophore for the transfer of

energy into the micro-organisms.

Other trials also using a 30 mW HeNe laser operating at 632.8 nm with a 1 mm

diameter for 90 minutes showed that the addition of the photosensitiser toluidine

blue allowed laser sterilisation to be achieved on 11 different strains of micro-

organisms in aqueous suspension. None of these micro-organisms were sterilised

without the addition of the photosensitising dye [24].

From these discussions, light wavelengths in the visible portion of the

electromagnetic spectrum will now be disregarded as not being feasible for

application in large-scale systems. While visible light can produce biocidal

effects, the requirements to add photosensitising agents to promote efficacious

treatment remove the advantages of the laser systems over other methods. The

ultra-violet and infrared radiations will now be considered in detail as being the

more promising candidates.

3: Laser Parameter Selection

- 71 -

3.2.6.3 Ultra-violet Light

Previous discussions have shown that high-energy photons emitted from ultra-

violet sources can prove lethal to micro-organisms. Ultra-violet lasers provide

intense sources of this region of radiation. The most common form of ultra-violet

laser is the excimer laser, first developed in 1975. Such lasers typically use a

noble gas and a halogen, which when energised form an excited dimer (hence the

name excimer) [23].

With varying combinations of the noble and halogen gases, ultra-violet

wavelengths from 351 nm to 157 nm (Table 3.1) can be achieved. These lasers are

readily available for commercial applications, and can produce parameters of

200 Watts, 1 kHz repetition rates, 4 J pulses and pulse durations of 10 ns to

250 ns. Excimer lasers typically have efficiencies of 1 % to 4 % comparing the

output laser power to the input electrical power. The maintenance free lifetime of

these lasers is typically of the order of 5 × 109 pulses [23]. One major downside to

the use of excimer lasers however, is the use of halogen gases, which are not

particularly environmentally friendly.

Ultra-violet light is known to have cell mutagenic action, as has been previously

discussed, by a photo-chemical process. Peak DNA damage is caused by single

photon absorption at 260 nm wavelength, i.e. 4.77 eV [34]. The excimer laser

closest to this wavelength is that of the KrF (248 nm, 5.13 eV). Germicidal lamps

tend to also centre on this wavelength, and are typically 253.7 nm. It is also

known that irradiation of these frequencies can be carcenogenic in human tissue,

such as in promoting malignant melanomas (skin cancer).

While ultra-violet light is much less absorbed in water than infrared wavelengths,

the effect of the ultra-violet light on cells is not photo-thermal, but photo-

chemical, thus the absorption by water is of little interest from the ultra-violet

view point. The ultra-violet light causes its damage to cells via direct interaction

with key cell constituents. Hence, the lower the absorption of ultra-violet light by

water, the better, as the incident light will have a higher remaining energy with

which to inflict damage on the cell's molecules.

3: Laser Parameter Selection

- 72 -

Research conducted by Karoutis et al. [35] has shown that the ArF excimer laser

(193 nm, 6.4 eV) is strongly biocidal. This laser wavelength is preferential to that

of the longer wavelengths produced by the likes of the KrF (248 nm) laser as the

photon energies are strongly absorbed in the cell proteins, before reaching the

cell's nucleus. Thus, the micro-organisms are more likely killed by DNA

disruptive photoproducts instead of DNA mutagenic action. These effects are

likely to be more immediate and predictable than DNA mutagenicity.

Tests have shown that using an ArF excimer laser for sterilisation, with increases

in laser energies, pulse numbers and repetition rates all contribute to increased kill

levels [35]. Typically, 10 J·cm-2 to 15 J·cm-2 are needed to kill bacteria, achieving

up to an 8 log kill rate.

Watson et al. [7], in their comparison of seven different wavelengths of laser on

bactericidal activities, utilised a frequency tripled Nd:YAG system producing

ultra-violet light of 355 nm. This wavelength is close to that emitted by a XeF

excimer laser (351 nm). While the effects of these tests were biocidal, they were

low compared to other lasers tested (for example the CO2 laser). The typical

energies densities used by the above laser in these tests were of the order of

10 J·cm-2. The low levels of bactericidal activity may be attributed to the longer

wavelength of the ultra-violet light compared to that of the ArF laser as discussed

above.

United states patent 5 439 642 cites an example of the use of ultra-violet radiation

to sterilise contact lenses, with wavelengths of 100 nm to 350 nm and energy

densities of 0.1 J·cm-2 to 10 J·cm-2 suggested [36].

Frucht-Pery et al. [37] demonstrated the use of an ArF excimer laser to sterilise the

fungus Candida albicans with approximately 800 pulses at an energy density per

pulse of 0.3 J·cm-2 and pulse rate of 10 Hz. This equates to an accumulative

energy density of 240 J·cm-2.

3: Laser Parameter Selection

- 73 -

This body of evidence shows that the use of ultra-violet laser technology to

sterilise items in industrial applications is being taken very seriously. The use of

the shorter wavelengths has been selected as they will not provide significant

damage to the item being processed at the given energy densities compared to

longer wavelengths such as CO2 lasers.

3.2.6.4 Infrared Light

Moving to the longer wavelengths of the electromagnetic spectrum, the infrared

lasers become the next focus of attention. The most common of these being the

Nd:YAG laser (1.06 µm wavelength) and the CO2 laser (10.6 µm wavelength), the

two laser systems upon which much recent work has centred pertaining to

bactericidal activities.

However, as has been discussed previously, the infrared Er:YAG laser has the

highest absorption peak in water of any laser. Unfortunately, there has been little

work conducted into the bactericidal effects of this laser, with the notable

exception of Hibst et al. [38] who studied the effects of this laser on extracted

human teeth with carious lesions containing caries bacteria. An energy density of

1.7 J·cm-2 per pulse with a total of 50 pulses giving an accumulative energy

density of 85 J·cm-2 proved efficacious in sterilisation. This demonstrates a real

scenario in which the bacteria being targeted reside in the caries of human teeth

rather than a homogenous agar medium in a petri dish.

3.2.6.5 Infrared Light - Nd:YAG

Nd:YAG lasers are as common in industry as the CO2 laser, and with this in mind

their availability, state of development, cost and power outputs are likely to have

been optimised over the years to produce highly efficient and cost effective lasers.

From the water absorption graph (figure 3.3) it can be seen that the Nd:YAG laser

3: Laser Parameter Selection

- 74 -

with its 1.06 µm wavelength is almost 1 000 times less absorbed in water than the

CO2 laser. Moreover, being a flash-lamp pumped system, the Nd:YAG laser will

be 10 times less efficient at least than the CO2 laser. This leads to a relative

predicted efficiency between the two systems of 10 000 times in favour of the

CO2 laser, considering the thermal heating effects of water only.

Nd:YAG lasers have proved effective sterilisation agents, but require relatively

high energy density levels to achieve sterilisation, for example an energy density

of 144 J·cm-2 is required for moist Bacillus stearothermophilus spores (dry spores

needed higher energy levels again) [39].

Experiments with a Nd:YAG laser on Pseudomonas aeruginosa, Staphylococcus

aureus and Escherichia coli have shown that 1 667 J·cm-2 were required to

provide between 2 log to 8 log of kill. This study also investigated the addition of

photosensitising dyes to promote biocidal action of the Nd:YAG laser. Methylene

Blue did prove to aid the bactericidal effect on Pseudomonas aeruginosa,

however this bacterium also has the ability to produce pigments, one such being a

bluish-green pyocyanin, which would give it a predisposition to absorbing red

light. A further investigation of this study hinted that the temperature increase in

the substrate or carrying medium of the micro-organisms due to the irradiation by

laser can also contribute to the biocidal activity of the laser [5].

A recent study conducted on several bacteria and yeasts on agar with a Nd:YAG

showed that levels between 1 768 J·cm-2 to 4 489 J·cm-2 were required to

completely inactivate the bacteria over half the surface area of the laser spot size.

The most resistant strain was Bacillus stearothermophilus, which belongs to the

group of bacteria resistant to high temperatures. The strains of bacteria tested

included various morphologies and Gram strains, with no particular strain

showing any great advantage over the others. One organism tested, Deinococcus

radiodurans is know to be highly resistant to ionising radiation, but this did not

prove resistant to the laser irradiation [40].

3: Laser Parameter Selection

- 75 -

Experiments with Enterococcus faecalis, a bacteria which is relatively heat

resistant, Gram-positive, non-spore forming and a facultative anerobe, have been

conducted by Rooney et al. [41] which again confirm the biocidal effect of the

Nd:YAG laser. These trials have shown a 4 log kill for a total imparted energy of

54 J. Unfortunately, due to the nature of their experiment, an energy density level

was not available.

3.2.6.6 Infrared Light - CO2

Tests have shown that CO2 lasers are equally efficient at providing bactericidal

effects on both Gram-negative (Escherichia coli) and Gram-positive

(Staphylococcus aureus) bacteria [42]. The same tests achieved between 4 log to

7 log of kill depending on the use of a focused or unfocused beam, with the

focused beam being the least efficient. The reason for the inefficiency of the

focused beam is that the treated area may not have been completely covered due

to inaccurate scanning mechanisms. The focused beam of 0.2 mm diameter

provided an energy density of 1.2 MJ·cm-2, while the unfocused beam of diameter

3 mm gave 3 540 J·cm-2.

Clinical tests with CO2 lasers in vivo have been proven to reduce post-operative

infection in amputation cases. Additional tests were performed on rabbits in vivo

with the addition of Pseudomonas aeruginosa to open wounds. After treatment

with a 15 W CO2 laser less than 10 % of the wounds caused infection post laser

treatment compared to 40 % being treated with iodine solutions. There is not

sufficient data to extrapolate the energy densities used, but it is clear that the CO2

laser has a bactericidal action [43].

A test performed on metal scalpel blades with a 10 W CO2 laser for durations of

1.5 minutes to 2.0 minutes, that had been previously inoculated with Bacillus

subtilis and Clostridium sporogenes spores, showed 100 % sterilisation on every

scalpel blade [4].

3: Laser Parameter Selection

- 76 -

In a comparative test of lasers operating at seven different wavelengths (including

Nd:YAG) on Escherichia coli cultures, the CO2 laser achieved bactericidal effects

at between 1.3 J·cm-2 to 8 J·cm-2, whereas the Nd:YAG laser required 1 210 J·cm-2

to 1 940 J·cm-2, approximately 1 000 times greater [7]. This concurs with the

previous prediction from the water absorption graph (figure 3.3) that the CO2 laser

would be 1 000 times more absorbed in water and therefore 1 000 times more

efficient in the sterilisation of micro-organisms. Moreover, with the CO2 laser

being inherently more efficient, the real power efficiency is more likely to be

10 000 times that of Nd:YAG.

United States patent 3 941 670 defines a method of altering biological and

chemical activity of molecular species. In particular, it quotes the use of an

unfocused 23 W CO2 laser to inactivate dry Bacillus subtilis spores in 100 ms [44].

No mention of the beam diameter is made, so the relevant energy density cannot

be calculated. This effect is of particular interest as spores contain little water,

particularly when they are not contained in solution. It is anticipated that most

organisms requiring sterilisation are likely to be vegetative, but the effect of the

CO2 lasers on spores is especially encouraging as a potential source for a generic

laser system.

Hooks et al. [45] showed that endodontic stainless steel reamers seeded with

Bacillus subtilis var. niger spores and Bacillus stearothermophilus spores and

treated with a 10 W CO2 laser for 3 seconds per surface showed no subsequent

growth of the micro-organisms. This trial further demonstrates the efficiency of

the CO2 laser in sterilising bacterial spores. Unfortunately, there is insufficient

information from these trials to extrapolated the system’s energy density.

3.3 Selected Laser Wavelength

Following the above discussions it was decided that a carbon dioxide laser system

would be the preferential choice for a generic large-scale laser based sterilisation

system.

3: Laser Parameter Selection

- 77 -

While the excimer lasers have proven to have high bactericidal effects, they are

still relatively costly and inefficient in power terms compared to the CO2 lasers.

Additionally, the use of halogen gases with the excimer lasers has a negative

environmental impact, where the proposed use of lasers for sterilisation is to

promote a clean alternative to other traditional methods. Excimer systems, being

pulsed systems, also give more processing problems when being implemented in a

continuous process to achieve uniform kill levels.

While the Er:YAG is theoretically the best choice for the sterilisation of bacteria

due the high absorbency of its wavelength in water (the primary chromophore), its

poor system efficiency, high cost and pulsed operation compared to the CO2 laser

make it a less appealing choice for a commercial application.

The Nd:YAG system, again proved to provide bactericidal action but is 1 000

times less efficient at the process than a CO2 laser.

As part of this study a CO2 laser is to be designed into a commercial scale

sterilisation system for the sterilisation of eggs from Salmonella enteritidis. This

will enable the quantification of such a system under real operating conditions

instead of laboratory conditions.

The following outlines the key parameters that influenced the decision to utilise a

CO2 laser source:

• Highly efficient laser system, typically 10 %

• Readily available and comparatively cheap

• Flexible to interface into control systems

• Theoretically the best commercial choice

• Have demonstrated high sterilisation rates in laboratory trials

• 1 000 times more efficient than Nd:YAG for sterilisation

• Available in continuous wave

• Environmentally friendly

3: Laser Parameter Selection

- 78 -

With the laser system and wavelength now settled upon, there are further

considerations of the laser's spatial and temporal profiles for the processing of the

aforementioned eggs. These two areas will now be discussed in detail.

3.4 Spatial and Temporal Profile Analysis

The efficiency of a given wavelength of laser for the sterilisation of micro-

organisms can be significantly altered by the temporal and spatial profile of the

laser's output and the surface texture of the substrate being treated.

Lasers come in two forms, continuous wave (CW) and pulsed. The pulse shape,

repetition rate, mark-space ratio and pulse length are all parameters that can be

varied within the temporal profile of a pulsed laser. There are less parameters that

can be modified in the temporal domain for the CW lasers. The key parameter

being the duration of exposure of the CW beam to irradiate a given surface.

The spatial profile of a laser beam output refers to the distribution profile of the

laser's energy within a given area. These spatial profiles of raw laser beams are

termed modes and are effected by various physical parameters acting on or within

the lasing medium and laser cavity.

Curved and irregular surfaces present significant problems to the laser sterilisation

of these surfaces, altering the spatial profile of the incident laser beam, as seen by

the surface. Reduced fluences will be found when the incident laser beam does not

hit a surface perpendicularly. These reduced fluences will reduce the effectiveness

of the laser's sterilisation abilities. A further complication for irregular (rough)

surfaces, will be certain areas of the surface in micro-cavities may be in shadow

from the incident laser light. Additionally, bacteria also have an affinity to grow

in micro-cavities, thus compounding the problem [35].

3: Laser Parameter Selection

- 79 -

3.4.1 Spatial Analysis

For the application in question, a uniform energy density profile is required from

the emergent laser beam, and particularly the spatial profile on the surface being

treated.

The spatial profile of a laser beam is commonly referred to as its mode, or more

accurately its transverse electromagnetic mode (TEM). These modes can vary

from the simplest TEM00 (often called the uniphase mode) to much more

complex, higher order modes, which can look like mountain ranges (with

numerous peaks and troughs of laser energy distributed over the laser's spot).

These modes are designated TEMqr, where q and r are integers referring to the

numbers of minima (or phase reversals) as the laser beam is scanned horizontally

and vertically respectively. The TEM01
* mode is a combination of TEM01 and

TEM10 modes and is sometimes referred to as the doughnut mode. Figure 3.4

shows a selection of low order TEM modes [31].

TEM00 (uniphase) TEM01
*

TEM10 TEM11

TEM02 TEM12

Fig. 3.4: Low order laser transverse

electromagnetic mode patterns.

3: Laser Parameter Selection

- 80 -

To give the best starting point for uniform coverage of substrates and uniform kill

rates, it is desirable to choose the most homogenous TEM mode. This is the

TEM00 mode, with its Gaussian (or bell shaped) beam profile. The TEM00 mode

also has the greatest spectral purity, degree of coherence and lowest divergence

for the emergent laser beam of all the TEM modes. Analysing the energy at a

cross section of such a laser spot will give a graph as shown in figure 3.5.

Conveniently, the majority of commercial CO2 laser systems on sale today are

offered with the TEM00 mode (or near TEM00 mode) as standard, as this is the

most uniform and efficient mode for most applications.

 Fig. 3.5: Energy profile of TEM00 mode laser beam.

In addition to the effects of the laser mode on the uniformity of substrate

coverage, the topographical nature of the item(s) to be sterilised will have a

significant impact upon the efficiency of the sterilisation procedure. The ideal

environment is in which the incident laser beam will impinge upon the substrate

perpendicularly.

3: Laser Parameter Selection

- 81 -

If the angle of the surface presented for irradiation varies from 90°, then the

energy contained within in the laser's beam will become diluted over a larger

surface area. This reduces the energy density imparted to the treated substrate.

Following from the previous discussions, energy density (fluence) is the critical

factor determining effectiveness of bactericidal activity. Hence, for a given area a

sufficient amount of energy must be imparted to kill all bacteria. If this area now

increases, but the given energy remains constant, then the effective energy density

has decreased and the possibility of certain bacteria surviving increases.

This effect is of major importance to the continuing study as all items to be treated

in the real world will have a multitude of shapes and sizes. The choice of eggs for

this study was brought about by recent scares of eggs being contaminated with

Salmonella enteritidis, this however has presented serious processing problems

with the egg shape, as the egg curves in every one of the three classical

dimensions, x, y and z. To achieve a near constant energy density, while covering

the whole egg, is a difficult task, but has been achieved. Chapter 4 describes in

detail the design and construction of a prototype system for sterilising eggs using

a CO2 laser and numerous processing techniques to try and maintain a constant

energy density, while covering the whole surface area of the egg.

3.4.2 Temporal analysis

The chosen laser is a continuous wave CO2 laser, and as such there are no pulse

shape, duration or repetition frequency parameters that can be directly varied. The

CW beam from the laser can be gated and its power varied. That is, the beam can

be switched on and off by a control system and the beam's power can be

continuously controlled by the same control system. This would give the ability to

mimic laser pulse trains if so desired. These parameters give some control of the

laser's temporal profile.

3: Laser Parameter Selection

- 82 -

Furthermore, the above laser beam could impinge on a controlled scanning mirror.

Such a mirror can sweep the laser beam over a given surface at a controlled

velocity. This scanning mirror gives the laser beam another temporal effect with

regards to the surface being sterilised. The faster the angular scan of the mirror,

the faster the laser spot will move across a substrate's surface, thus the dwell time

for the laser spot at a given point will be reduced. This in turn will reduce the

amount of light energy imparted to the substrate's surface and reduce the energy

density seen by any particular point on the substrate's surface.

Under many industrial or commercial applications, products to be sterilised would

have to be scanned by a laser, or continuously moving products would pass by a

static laser beam. If a train of laser pulses were used, and the relative velocity

between the laser beam and the substrate were too high, then there may be

untreated gaps between consecutive laser pulses, where the product had not been

irradiated.

Pulsed systems can often have advantages over CW systems, as the peak power of

the individual pulses can be many factors greater than the average power of the

CW laser. These are very good for ablating small areas with high peak powers,

raising localised areas to very high temperatures, without surrounding areas

heating up due to the thermal inertia of the substrate and the short length of the

pulse.

A CW system will prove advantageous for general sterilisation applications, with

the laser beam being continuously on there should be less chance of any area

being missed, depending on the type of laser scanning technology adopted.

Furthermore, the laser may also impart heat to the upper layer of the substrate,

which could well help to kill bacteria hidden by shadowing by a secondary

thermal heating effect as has been hinted at in previous laboratory trials [5].

Obviously, this system will have to be carefully balanced for particular substrates,

taking care not to impart too much heat to cause any deleterious effects to the

substrate's surface or beyond.

3: Laser Parameter Selection

- 83 -

3.5 Summary

The beginning of this chapter looked at the broad electromagnetic spectrum with a

particular focus on the middle portion of the spectrum – light. This portion of the

electromagnetic spectrum is covered by a wide range of commercially available

lasers from the infrared CO2 laser, through the visible HeNe laser to the ultra-

violet excimer lasers.

Each laser wavelength above has an associated photon energy ranging from

0.12 eV for the CO2 laser to 11.27 eV for the H2 excimer laser. These photon

energies have different effects on biological organisms. The lower photon

energies have photo-thermal effects on micro-organisms, i.e. the laser energy

absorbed by a bacteria produces a raise in heat of the organism. Higher photon

energies have a predominantly photo-chemical effect, with the photon energies

being sufficient to break apart atomic bonds. For example, ultra-violet light of

3.0 eV has sufficient energy to disassociate the C-N bond.

Only light actually absorbed by a micro-organisms will have any biocidal effect

on that organism either through photo-chemical or photo-thermal effects. The part

of a substance that absorbs light is called a chromophore. As bacteria are

composed of 80% water, this makes the best choice of chromophore within

bacteria.

Water absorbs infrared light greater than other portions of the light spectrum

leading to photo-thermal biocidal effects in micro-organisms from these

wavelengths. The absorption peak of water is at 3 µm, close to the wavelength of

the Er:YAG laser. While the CO2 laser is absorbed 10 times less in water than the

Er:YAG laser, it is 100 times more efficient making it the preferable choice for a

commercial system. While the Nd:YAG laser is a common industrial laser, it is

absorbed 1 000 less in water than the CO2 laser and is typically 10 less efficient.

This difference has been observed in recent research comparing the biocidal

activity of the CO2 and Nd:YAG lasers, concluding that the CO2 laser is the most

efficient for the sterilisation of bacteria [7].

3: Laser Parameter Selection

- 84 -

With the choice of laser wavelength defined for optimum sterilisation efficiency

and commercial implementation the remaining laser parameters of spatial and

temporal profile had to be defined. The spatial profile of TEM00 was chosen for its

homogenous quality and low divergence. While CO2 lasers are most commonly

CW, pulsed versions are available, i.e. the Transverse Excited Atmospheric (TEA)

laser. However, for this application a pulsed laser was deemed inappropriate as

the gaps between consecutive laser pulses may lead to areas of the substrate being

treated receiving no irradiation.

4: Experimental System Design

- 85 -

4 : EXPERIMENTAL SYSTEM DESIGN

4: Experimental System Design

- 86 -

4.1 Introduction

The overriding conclusion from the preceding chapter was that a CW CO2 laser

was the preferred choice for a commercial scale sterilisation system based on

system cost and bactericidal efficiency.

All previous discussions and research papers have only considered static targets

with static laser beams. In a commercial environment, high volumes of product

would have to be treated, more than likely moving through a continuous process.

The processing demands for such systems would either require product to be held

stationary while laser processed, or require the laser system to sterilise moving

targets. Moreover, common items being sterilised have numerous surfaces, all of

which will require sterilisation. Such products would require either multiple laser

beams impinging on the product from a variety of directions, or fewer laser beams

scanning the surface of a product.

With the introduction of complex surfaces and moving targets, the requirements

of meeting uniform dose levels per unit area of product become increasingly

difficult. Indeed the complexity of such scanning systems in the requirements

mentioned above have already been predicted in recent publications as being

potentially troublesome [35].

The following sections of this chapter outline the approach adopted and the

reasons behind the decisions made, to irradiate a moving three-dimensional target

with uniform dose levels.

The targets for this application were chicken eggs destined for breeding stock -

not eating eggs. Part of the reason for the initial trials being conducted on

hatching eggs compared to eating eggs is their relative value. The value of a

hatching egg from quality breeding stock can be up to £10 each. The high cost of

these eggs was sufficient to justify the development costs for the proposed

research system, over £250 000.

4: Experimental System Design

- 87 -

It is advantageous to ensure that the surface of hatching eggs are free from

contaminating micro-organisms, particularly Salmonella enteritidis, which can be

passed on to the emerging chicks via the shell when a chick hatches, or can enter

the egg via pores in the egg’s shell [18]. By a reduction of the surface micro-

organisms found on the shells, it is hoped to increase the number of chickens bred

from a given number of eggs and hence increase the overall profitability of the

complete chicken / egg production cycle. With particular recent media publicity

regarding Salmonella contamination of eating eggs, the treatment of eating and

hatching eggs are both of interest. If Salmonella can be eradicated from the

hatching eggs via surface sterilisation, this can have a profound effect of the

complete production cycle of eating eggs.

The design of the experimental system has incorporated as many variable process

parameters as possible, allowing the full analysis of the ideal sterilisation

requirements for eggs via laser on a commercial scale. The specific design criteria

will be individually examined in this chapter, but first the structure of the egg and

its particular requirements and problems associated with handling and

susceptibility to damage will be investigated.

4.2 Egg Structure

The proposed system must maintain laser power levels below the egg's surface

and internal damage thresholds. In addition, the mechanical handling of the eggs

for processing must also be achieved in such a fashion that is not deleterious to

the egg.

If the laser power becomes too high or mechanical shocks are imparted to the egg,

one risks damaging the egg and reducing the chick's viability. With this in mind, it

is advisable to first analyse the detailed structure of the egg, with particular

attention being paid to the external parts that will be exposed to the laser beam

and mechanical handling systems.

4: Experimental System Design

- 88 -

Eggs consist of three main parts, the shell, albumen and yolk. Figure 4.1 shows

the inner structure of a typical egg:

 Fig. 4.1: Internal structure of an egg.

The three key areas of the egg will now be discussed individually with reference

to the above diagram.

4.2.1 Egg Shell

4.2.1.1 True Shell

The true shell is approximately 0.30 mm to 0.37 mm in thickness (membranes

excluded) with a density of 60 mg·cm-2 to 100 mg·cm-2 and weight of 5.0 g to

7.5 g [46]. The weight of the shell accounts for 9 % to 12 % of the overall weight of

the egg (depending on size) [47]. The shell is rigid but brittle, with its mechanical

strength being obtained from several contributory factors, not least of which is its

shape (others being the shell thickness and its physical composition). Due to the

curvilinear nature of the egg, shell strength varies according to position on the

shell (as well as varying shell thickness and shell density). Being brittle, the shell

Cuticle

True Shell

Outer Membrane
Inner Membrane

Air Space

Germinal Disc
Vitelline Membrane

Yolk

Chalaz

Inner Thick

(chalaziferous layer)

Inner Thin
Outer Thick

Outer Thin

4: Experimental System Design

- 89 -

is easily broken by the emerging chick, while still being an excellent container to

protect the incubating embryo.

There is evidence that the strength of the egg shell under compression or impact

depends upon the rate at which the energy is transferred to it - the higher the rate,

the greater the strength. It is clear that thinner shells are more likely to suffer

cracks. Anderson & Carter (1975) showed that when otherwise well-formed eggs

impact upon a heavy, stiff body a significant number will fracture if the drop

exceeds 3.3 mm, which corresponds to a velocity of 250 mm·s-1 [48].

The shell is formed from approximately 94 % calcium carbonate (CaCO3) with

small amounts of magnesium carbonate, calcium phosphate and other organic

matter [47]. The shell is deposited in such a way that an inner medullary layer of

inverted cones is formed (figure 4.2). The mammillary layer represents

approximately one third of the shell's thickness. The outer "spongy" palisade layer

forms the remainder of the true shell.

 Fig. 4.2: Transverse section of an egg's shell.

4: Experimental System Design

- 90 -

4.2.1.2 Pores

There are between 7 000 and 17 000 pores distributed over the shell's surface

allowing gaseous exchanges to occur between the contents of the egg and the

surrounding environment [47]. These pores are approximately 10 µm to 70 µm in

diameter.

However, the pores are not uniformly distributed over the entire shell surface area,

but have a significant predominance at the broad end of the shell than the narrow.

In fresh eggs, the outer cuticle may also seal the pores.

As well as allowing the exchange of gaseous products, the pores also present an

opportunity for the entrance of micro-organisms into the egg. However, the egg

has a host of defence mechanisms against invading micro-organisms, one of

which is the cuticle, with others being the true shell, membranes and albumen.

Damage to the shell and cuticle can assist in the invasion of micro-organisms, and

hence must be avoided with the laser processing and handling of the eggs.

4.2.1.3 Cuticle

The characteristic bloom of a fresh egg is due to the presence of a thin, transparent

organic cuticle on the outer surface of the true shell. Once the cuticle is dry, it is

very resistant to damage, although during storage the cuticle can begin to

disintegrate. If this cuticle is compromised in any way, there exists a potential

passageway for pathogenic organisms into the egg and the embryo.

During laser processing of the egg, it is vital that damage to the cuticle is avoided,

as this would leave the egg vulnerable to attack. The choice of laser power density

and processing time needs to be carefully controlled to provide the required levels

of sterilisation of the egg's surface without damage to the cuticle. Any mechanical

handling of the eggs must also be sufficiently gentle to prevent damage to the

cuticle for the same reasons.

4: Experimental System Design

- 91 -

4.2.1.4 Shell pigmentation

Shell colour is caused by the presence of a red-brown pigment (ooporphyrin)

being deposited on the outer surface of the shell and in the cuticle. A blue-green

pigment (oocyan), which can be found in some shells, is deposited throughout the

shell however.

Different pigment colours will have different absorption characteristics for given

wavelengths of light and so could have a potential impact upon the laser power

levels utilised for different types / colours of eggs.

4.2.1.5 Membranes

The inner surface of the shell has two membranes. These are firmly attached to

each other throughout the egg, except at the broad end of the egg where an air gap

is formed.

The outer membrane is approximately 50 µm thick, while the inner membrane is

approximately 20 µm thick. The outer membrane forms the foundation of the shell

and consequently any deformation in this membrane can lead to a deformed shell.

A fine network of keratin based fibres within the membranes exists, particularly

in the denser inner membrane, which forms an excellent barrier against potential

pathogenic micro-organisms.

4: Experimental System Design

- 92 -

4.2.1.6 Air Space

The typical body temperature of a hen is 41.5 °C. As soon as an egg is laid, the

contents of the egg begin cooling and hence contract. Air is drawn into the egg via

the pores and the semi-permeable membranes during this process, forming a small

air space (a little less than 2 mm in height) at the broad end of the shell. This air

space probably occurs at the broad end of the shell due to the higher concentration

of pores in this region and therefore has a higher rate of gaseous exchange.

The size of the air space varies depending on the size and shape of the egg, the

permeability of the shell, the surrounding temperature and humidity and the age of

the egg. As eggs age, water is lost from the egg by evaporation, hence increasing

the size of the air space. This can be used as a useful gauge for determining the

approximate age of an egg.

4.2.2 Egg Albumen (Egg White)

The clear jelly-like albumen accounts for approximately 67 % of the egg’s

weight [49] and consists of four layers. The yolk is surrounded by a narrow layer of

inner thick albumen (chalaziferous layer), which is extended at two points to

form the chalazae. These fibrous chalazae straddle the inner thin albumen and

are attached in the capsule of outer thick albumen. The outer thick albumen is

loosely attached to the shell at both ends and is in turn surrounded by a layer of

outer thin albumen. Hence, the yolk is held near the centre of the egg and is

prevented from making contact with the shell.

This damping effect of the albumen is critical in protecting the developing embryo

from physical damage due to mechanical shocks and vibration of the egg. The

effect will greatly help in the mechanical handling of the egg in the proposed

experimental process.

4: Experimental System Design

- 93 -

The albumen also forms a biological barrier and contains substances, which can

inhibit the activity of any potentially pathogenic micro-organisms breaching the

outer defences of the shell.

The albumen will also act as a thermal heat sink, conducting the high

temperatures reached at the surface of the egg's shell, generated by the laser

system, away from the shell's surface. Due to the relatively large volume of the

albumen compared to the short duration of the laser beam and the surface area

treated, the relative internal temperature rise of the albumen is expected to be

insignificant.

4.2.3 Egg Yolk

The egg yolk is a nutritious material enclosed within a thin transparent vitelline

membrane. The yolk surface is a uniform yellow viscous liquid, with the

exception of the germ cell (blastodisc), which is the region of cellular division in

a fertile egg.

4.3 Specific Egg Handling Requirements

The objective of producing a commercial scale research system required certain

criteria being met to enable the research system to integrate with standard

hatchery operating conditions, with regards to egg processing and handling.

Standard plastic trays are used within hatcheries to hold and transport eggs. These

trays contain 12 rows of eggs, with each row containing 11 eggs, a total of 132

eggs. The spacing between consecutive eggs in a row is 80.5 mm (between

centres). The spacing between eggs in these trays was adopted for use within the

system design to facilitate handling, and provide fixed distances between eggs.

4: Experimental System Design

- 94 -

This meant that standard egg trays could be used to load and unload a commercial

scale working research system in a normal operating environment.

Being of a fragile nature, the eggs were picked up by vacuum rubber suction cups

while being transported through the research system machine. This is a well-

established approach to egg handling, with very few breakages occurring.

The average diameter of a chicken egg is 45 mm at its widest point, with its

typical height being 60 mm.

4.4 Concept Design

Before proceeding to a commercial scale system for full evaluation, certain key

variables and concepts had first to be evaluated. These would give an indication of

the laser power levels required and potential line speeds that could be

accommodated for given laser powers to achieve adequate kill levels. The key

ideas providing uniform dose levels could be evaluated before committing to a

final design.

A prototype system was configured to process a row of seven eggs, spaced at

80.5 mm centres (as per standard egg tray) at a linear speed of approximately

150 mm·s-1. A linear conveyor belt was used for these trials with a variable speed

motor drive that could be adjusted to test the system's effectiveness at different

line speeds. Attached to the conveyor belt was a shaft encoder, enabling the test

system's computer control unit to monitor the belt's speed, making any alterations

necessary to compensate for fluctuations in velocity.

This system incorporated some of the key features proposed in the final system

design, which would help to achieve a uniform laser dose over the complete

surface area of an egg. The concepts behind these features will be discussed

below, with the technical implementations of these processes being discussed in

detail in the following sections of this chapter.

4: Experimental System Design

The system was under microprocessor control enabling parameters to be adjusted,

and in essence constituted the core of the project with all major subsections of the

final system being present. Numerous trials conducted on this set-up helped to

determine the ideal mounting locations of the relevant optical systems and laser

powers / line speeds for the final system.

4.4.1 Resonant Scanner Concept

The natural beam emitted from a CO2 laser is approximately circular and of 4 mm

diameter for the particular laser chosen. Under most processing conditions, this

beam will need to be manipulated by a series of optics to provide a more useful

beam profile. In this application, a line of laser light would be more appropriate

than a single spot.

The initial intention of the system was to pass an egg past a stationary curtain of

laser light covering the complete height of an egg, as can be seen in figure 4.3. In

this way the complete egg would be covered with laser light, providing the egg

was illuminated from both sides. Figure 4.3 shows an egg being illuminated from

a single side only.

 F

w ew
Plan Vie
ig. 4.3: Egg passing stationary cu

Side Vi
- 95 -

rtain of laser light.

Laser

Source
Direction

of Travel

4: Experimental System Design

- 96 -

The generation of a line of laser light can be achieved in one of two ways, either

using a fixed optical system or by mechanical manipulation of the laser beam.

The fixed optical arrangement was not desirable, partly due to the prohibitive cost

(£6 000 per laser beam processed) and partly due to the nature of the light beam

emitted. The power density profile from such an optical system can be seen in

figure 4.4. From this it can be seen that a high power density is achieved at the

centre of the line, fading to almost zero at the extremities of the line.

 Fig. 4.4: Linear beam profile from fixed optical arrangement.

Raw Laser Beam

Fixed Optical System

Fan of Laser Light

Position in light beam

Power

Density

4: Experimental System Design

- 97 -

Unfortunately, the egg’s surface curves away from the laser source at its

extremities. Hence, to obtain a uniform energy density at all points of the egg's

surface, additional laser power needs to be applied to the egg at its upper and

lower points. The fixed optical method works against the natural curvature of the

egg at this point, compounding the problem, and was hence discounted.

The alternative method utilised mechanical manipulation of the beam. This

essentially involves firing a laser beam onto a movable mirror than can be rotated

about a single axis so describing a line of laser light in a single plane.

The mirror's movement could be achieved using a galvanometer, where a

computer system could accurately position the laser beam at any point but would

involve significant processing power and increased cost, or a free running

resonant scanner.

A resonant scanner is effectively a mirror mounted on a tuned spring mechanism

with two driving solenoids and a feedback coil monitoring the position of the

mirror. The two solenoids are driven via a small, low cost control board, which

also monitors the position of the mirror for closed loop control.

In operation, the mirrors resonate in simple harmonic motion about a single plane

at approximately 300 Hz. The frequency being dependent upon the natural

resonant frequency of the mechanical system, being influenced by the properties

of the spring and the physical mass of the mirror attached to the spring. For this

particular system, mirrors of 18 mm diameter and 3 mm thickness were used,

coated especially for the CO2 laser wavelength.

With a laser beam incident on the resonant scanner, the scanner would describe a

single line in simple harmonic motion, slowing down at the extremities of the

lines, stopping, changing direction, and accelerating.

4: Experimental System Design

- 98 -

The resonant scanner system had the advantage of being low cost and requiring

little computer intervention to perform their task. The natural profile of the

resonant scanners also helped compensate for the profile of the egg. As the

resonant scanner approaches the end of its scan, it decelerates, hence allowing the

laser source to dwell on any particular point of the egg for longer, so imparting

more energy. This occurs at approximately the same location where the curvature

of the egg's increase.

A complete system costing approximately £300 could be realised for providing a

line of laser light with a resonant scanner. This option was considerably cheaper

than that of the computer controlled galvanometer.

4.4.2 Tracking Galvanometer Concept

In the simple case outlined above, a fixed line of laser light is aimed at a passing

egg to irradiate half of the egg. Due to the standard spacing of the eggs in a tray

(80.5 mm) and the typical egg diameter of approximately 45 mm, there exists a

mark to space ratio of nearly 1:1. Hence, approximately 50 % of the available

laser power is not being efficiently utilised.

Moreover, at the centre position of the egg, the laser beam is incident at right

angles to the egg. As the incident beam impinges on either side of the egg, the

incident angles become progressively acute. The effect of these grazing incidences

at the extremities of the egg serve to reduce the energy density of the incident

beam. This can be seen in figure 4.5 with the fixed laser beam positions of 1, 2

and 3. Beam 2 has a normal incidence, but beams 1 and 3 have severe grazing

incidences.

4: Experimental System Design

 Fig. 4.5: Compensation of gra

This effect can be compensate

the incident beam to reduce

incident laser beam to dwell o

total energy transfer per unit a

5 in figure 4.5.

This approach is best adopt

galvanometer being a mirror fi

When an electrical current is a

position according to the magn

In the initial prototype syste

angular velocity, set via a 10

automatic compensation for v

galvanometer's scan profile, (t

varying egg widths. These fe

machine. The galvanometers w

Processing Unit), scanning at t

l

 3
Direction of Trave
- 99 -

zing incidences and ma

d for in two ways. Fi

the severity of the ef

n these areas for a lon

rea. This can be visual

ed using a computer

xed onto an electrical

pplied to the galvano

itude of the current ap

m, the tracking galva

 kΏ linear potentiome

ariations in line speed

o compensate for the

atures however are in

ere triggered by a 5 V

he pre-set rate.

I

5
Angled Beam Reduces

Grazing Incidence and Time

Interval between Eggs
Normal

ncidence
Fixed Beam with Severe

Grazing Incidences
1
 2
 4
rk to space ratio.

rstly, by moving the angle of

fect. Secondly, to allow the

ger period to allow a similar

ised by the angle of the beam

-controlled galvanometer. A

device similar to an ammeter.

meter, the mirror will change

plied.

nometer tracked at a fixed

ter, hence not allowing any

, or for modification of the

natural shape of the egg), or

cluded in the final research

 pulse from the CPU (Central

4: Experimental System Design

- 100 -

4.5 Specific Design Parameters

To achieve the desired aims of the concept design outlined above, a number of

key design considerations had to be addressed in detail. There are four critical

system parameters that lead to the overall systems efficiency and control

effectiveness.

• Resonant Scanner with Laser Power Modulation

• General Beam Manipulation

• Return Stroke Optimisation

• Tracking Galvanometer Optimisation

Before each of these are discussed in detail, the overall system design and its aims

will first be discussed.

4.5.1 Outline System Design

The basic concept of the design was to take trays of contaminated eggs in on one

side of the machine, process the eggs via laser and provide clean trays of treated

eggs at the output. To achieve this, the machine had to be segregated into two

halves, clean and contaminated. Once cleaned, the eggs could not be replaced in

their original tray, but had to be stored in a fresh, uncontaminated tray. The

original tray being ejected from the machine, ready to be repopulated with

contaminated eggs for processing.

Being of a fragile nature, the eggs were picked up by vacuum rubber suction cups

while being transported from one side of the machine to the other. This is a

common approach to egg handling, with very few breakages occurring.

4: Experimental System Design

- 101 -

Once picked up from a tray of contaminated eggs, the eggs are transported

through a central processing point, which laser processes the sides and undersides

of the eggs. During this process, the eggs are held from above via the rubber

suction cups. Figure 4.6 shows the central processing point of trial machine with

the rubber suction cups.

 Fig. 4.6: Central processing point of trial m

The treated eggs are then deposited in the clean

the eggs have been obscured by the suction cups,

return stroke of the machine, while the moving

home position to collect a fresh row of eggs for pr

Central processing point
Rubber suction cups
achine.

egg trays. However, the tops of

 and are hence processed on the

carriage transverses back to its

ocessing.

4: Experimental System Design

- 102 -

4.5.2 Resonant Scanner with Laser Power Modulation

To prevent damage to the egg's cuticle at the extremities of the resonant scanner's

stroke (where the resonant scanner slows down, stops, and then reverses

direction), the laser power must be reduced prior to this point, and subsequently

restored to its previous level.

Unfortunately, all three of the resonant scanners used in the design were "free

running", and hence not in synchronisation with each other. This meant that while

one resonant scanner was at the top of its stroke, the others might be only half

way through a stroke for example. Three resonant scanners were used in total, one

for each side of the egg, and one for the top of the egg.

To compensate for this, a separate control system for each laser tube and for each

of the resonant scanners would be required. This would also remove the

possibility of using a single higher powered laser for the project, as two separately

controlled laser beam sources are a requirement of this approach, using the

resonant scanners, with modified laser power during the stroke. If however, the

laser power could be left at a fixed level, then a single laser source would be an

option, or if the resonant scanners could be synchronised.

One option considered for this approach was to have the main computer system

monitoring the position of the scanners via separate A/D (Analogue to Digital)

converters, and two individual D/A (Digital to Analogue) converters to control the

laser’s power. This could have been done, but was very complex and would have

potentially slowed the computer response time, which might have been needed at

a later date, or necessitate a more powerful (costly) computer control system, with

associated longer development times.

The adopted approach was to use discrete hardware controllers that continuously

monitored the scanner's positions. When a scanner's position passed a pre-set

threshold, the laser power was reduced to a lower, pre-defined value. Hence, the

laser systems had to have three power settings, one for full power, and two at

reduced power levels for the upper and lower strokes of the resonant scanners

4: Experimental System Design

- 1

corresponding to the top and bottom of the eggs. Figure 4.7 shows the resonant

scanner waveform with the upper and lower thresholds highlighted.

Fig. 4.7: Laser power modulatio

The upper stroke needed to have a grea

incidence had not been reached, as thi

holding the egg. The lower stroke only

lowest point of the stroke the most seve

Figure 4.8 shows a screen shot take

electronic hardware used to achieve thi

the signal from the feedback coil of the

trace and the output stroke pulse o

predetermined threshold being reached

scanner. The output pulse is subsequen

point.

 V

0

 Positive
Negative

Laser Power is

Reduced Beyond

These Thresholds
03 -

n for resonant scanner wave

ter reduction in power, as

s was obscured by the rub

required minimal reductio

re grazing incidence was en

n from an oscilloscope

s task. The screen shot (fi

free running resonant scann

n the lower trace, corre

 on the negative stroke

tly used to reduce the las
0 V
form.

 the full grazing

ber suction cup

n, as at the very

countered.

monitoring the

gure 4.8) shows

er on the upper

sponding to a

of the resonant

er power at this

4: Experimental System Design

- 104 -

 Fig. 4.8: Signal derivation for laser power.

This in theory was a perfectly valid system with the designed electronics

performing exactly as predicted in the laboratory. However, when translated onto

the research machine no change in laser power was noted. This was due in part to

two reasons; firstly the optical response of the laser tube being too slow and

secondly the frequency of the resonant scanner being too high in comparison to

the pulse modulation frequency of the laser.

The lasers used for this project were Synrad Series 57-1. Table 4.1 shows the

technical specification for this laser [50].

4: Experimental System Design

- 105 -

Table 4.1: Synrad laser series 57-1 specifications.

Laser characteristic Value

Wavelength (nominal) 10.6 µm

Power † 120 W

Power (minimum) 90 W

Power stability (30 s warm up) ± 8 %

Mode quality (TEM00 equivalent) 95 %

Beam diameter † 4 mm

Beam divergence † 3.5 mR

Polarisation Linear

Modulation capability (optical) 4 kHz

Cooling water 2 GPM

Electrical input (28 VDC to 32 VDC) 65 A

Weight (laser head) 29 lbs

Weight (RF power supply) 22 lbs

Electrical control TTL input (+3.5 V) to 10 kHz

† Typical.

The two parameters of importance from Table 4.1 for this problem are the optical

modulation capability of 4 kHz and the electrical modulation capability of

10 kHz. From this it can immediately be seen that the system is capable of being

electrically modulated far faster than the laser can optically respond.

With the resonant scanner’s frequency of oscillation being approximately 300 Hz,

this translates to a period of 3.3 ms per cycle, or 1.7 ms for the duration of a single

stroke. The lasers were being driven by the manufacturer’s recommended

modulation frequency of 5 kHz. This frequency equates to a period of 0.2 ms.

4: Experimental System Design

- 106 -

Hence, during the duration of a single stroke of the resonant scanner (1.7 ms), 8.5

laser pulses will be seen. From this it can be seen that at the dwell points at either

end of the resonant scanner’s stroke only one or two laser pulses will be affected

by the required downturn in power. Due to the optical response of the laser tube,

the effect on a single pulse is likely to be minimal. Furthermore, if the laser pulse

does respond to a degree and become reduced in duration, the laser will still

potentially be on for a short period at the dwell point, so still causing damage.

Figure 4.9 shows the thermal response of the system’s return stroke captured on

thermally sensitive paper. This clearly shows the dwell points and increased

power density at the end of each stroke. The pulse modulation of the laser can also

be clearly seen on each stroke. The length of the strokes in figure 4.9 are 40 mm,

each separated by 1 mm.

Fig. 4.9: Resonant scanner waveform on thermally sensitive paper.

As the lasers proved incapable of responding fast enough to the required

modulation of laser power at the extremities of the resonant scanner’s stroke, an

alternative method of preventing damage due to the scanner’s dwell points was

required. The final solution for this was the adoption of simple masks placed in

the optical path of the resonant scanners, masking off the upper and lower dwell

points of the scanner’s cycle. These masks were made from aluminium and acted

as heat dumps, absorbing the excess energy deposited by the lasers at the dwell

points of the resonant scanners.

4: Experimental System Design

- 107 -

The adoption of this method would now permit the use of a single laser system

with associated beam splitting optics instead of the two laser used for the initial

approach. Both approaches are still equally valid, with the final choice now being

one of cost and ease of the engineering integration.

4.5.3 General Beam Manipulation

The complete laser beam delivery system required 21 individual optics in total, as

shown in figure 4.10. The distances travelled by the laser beams were quite

significant requiring precise optical alignment. The use of a CAD (Computer

Aided Design) system proved very useful in simulating different scenarios of

optical arrangements prior to the final designs being chosen †. To achieve the

design requirements, a number of key issues had to be overcome. These will now

be discussed individually.

Fig. 4.10: Optical layout of trial machine.

† All project mechanical design was conducted by Chris Williams of ICN.

4: Experimental System Design

- 108 -

4.5.3.1 Beam Combining

Two individual laser sources were used to process each side of the eggs via the

resonant scanners during the first stage of the processing. Once the eggs have

been deposited in the clean tray, the transport carriage returns to pickup the next

row of dirty eggs. However, the tops of the eggs obscured by the holding rubber

suction cups have not yet been processed. These are to be processed on the return

stroke of the transport carriage with the third resonant scanner.

At this point however both laser sources will be available to scan a single line of

laser light. By combining these two laser sources together twice the laser power of

the first processing cycle can be obtained and can hence process the return stroke

at twice the speed of the initial cycle if desired. This maximises the use of the

available laser power and could help to speedup the overall processing time for a

complete cycle.

Eggs are normally stored in their trays with their narrower ends pointing down,

that is their broader ends will be the ends that are held by the rubber suction cups

and consequently could receive additional laser power on the return stroke. This is

advantageous for this application however, as it has been shown from the previous

discussion in section 4.2.1 (Egg Shell) that the broader end of the egg is the end

that contains the greatest number of pores. Moreover, as bacteria have a known

affinity for micro-cavities they are more likely to be found in higher

concentrations in the egg’s pores. Thus, the additional available laser power for

the return stroke may prove to be extremely advantageous to the overall efficacy

of the system’s performance.

To combine the two CO2 laser beams, the two beams have to be of opposing

polarisation. As standard, lasers tend to be of fixed polarisations. However, due to

the requirement of combining the two laser beams on the return stroke, a custom

optical system had to be designed to rotate the polarisation of one of the laser

beams, before the two beams could be combined with a single optic.

4: Experimental System Design

- 109 -

Figure 4.11 shows the optical arrangement used to combine the two laser beams,

providing the correct incident angles for both laser beams onto the combining

optic. The paths travelled by the laser beams in figure 4.11 are shown in blue.

Fig. 4.11: Combining of two polarised laser beams.

4.5.3.2 Laser Decoupling

The positional accuracy of the laser's pointing stability was critical to this

application due to the long beam paths involved in the system. Any error at the

laser source would be magnified by the end of the beam path, giving rise to

potential beam alignment problems.

The laser manufacturers did not have any data available quantifying the angular

and positional pointing stability / accuracy of their CO2 lasers. With this in mind,

it was decided to incorporate full optical decoupling at each laser source. This

gave the flexibility for complete and accurate alignment of each laser system,

should their emitted beams be variable in position from laser to laser. Figure 4.12

Combined Beams

Combining Optic

Laser Beam

Rotated Laser Beam

4: Experimental System Design

- 110 -

shows the arrangement of this optical de-coupling, with the laser light paths

shown in light blue.

 Fig. 4.12: Laser de-coupling, HeNe beam and pneumatic mirrors.

4.5.3.3 Focus Adjustment

A small amount of focus adjustment will be available, allowing the focal plane to

be matched to the egg's surface or centreline (this only applies when the beam is

normal to the egg surface). The focusing optic used had a focal length of 250 mm,

which provided sufficient depth of focus to compensate for dynamic focal

variations occurring due to the passing of the egg's profile. Being fixed, this was

not easily modified to accommodate different focal length lenses. The optimum

configuration of the focusing arrangement was investigated on the experimental

prototype prior to final design.

CO2 Laser

HeNe Laser

HeNe / CO2 Beam Combiner

De-Coupling

Pneumatic Moving

Mirror

Pneumatic Cylinder

4: Experimental System Design

- 111 -

4.5.4 Return Stroke Optimisation

Once the two laser beams have been combined, they must be directed at a moving

optic attached to the traversing carriage. Beam alignment at this point was critical

and optic stability crucial to the successful coverage of the egg tops.

At this stage of the beam delivery, any angular misalignment of the primary beam

path will be greatly amplified and therefore any optic mounts or associated

engineering must be of a substantial nature, coupled with fine adjustment

resolution. This is why the positional accuracy of the laser tubes was of such

importance.

As previously mentioned the beam path became quite complex and therefore the

commissioning and alignment of the various optical components became quite

onerous, and indeed hazardous. Hence, it was decided to include visible lasers

(HeNe) to aid this task. These can be seen in figure 4.12.

4.5.4.1 Movement of Mirrors

To enable the two laser beams to be combined, (allowing the top of the eggs to be

cleaned on the return stroke of the system), two mirrors, one on either side of the

machine, had to be moved accurately and repeatably, in and out of position at

each stroke of the machine. The optical arrangement for this can be seen in figure

4.12, which shows the position of the pneumatic cylinder and the two positions of

the mirror attached to the cylinder with the two resulting beam paths.

The pneumatic cylinders were triggered by computer control, with pneumatic

damping valves allowing the speed of operation to be adjusted. If the cylinders

were to operate too fast, the mirror mounts attached to the cylinders would receive

mechanical shocks, which may knock the system alignment out. Hence, the choice

of pneumatic cylinders with damping capability was of particular importance for

this application.

4: Experimental System Design

- 112 -

Figure 4.13 shows the schematic layout of the pneumatic cylinders controlled via

a single valve, with the two damping valves per cylinder, giving complete control

of the cylinder response.

Fig. 4.13: Pneumatic circuit for mirror control.

Finally, as a safety requirement, each mirror had a micro-switch sensor at each

extremity of movement. This gave positive feedback to the computer system,

informing it that both mirrors were in their correct positions and that it was safe to

continue.

4.5.5 Tracking Mirror Optimisation

4.5.5.1 Uniformity of Laser Coverage

The optimum position of the galvanometers relative to the eggs was established

from empirical trials conducted on the initial experimental system. This was

achieved by trials using "blue hypercolour eggs" and monitoring the uniformity of

coverage as a result of the focal variations and variable grazing incidences,

experienced as a direct result of the galvanometer positioning.

Pneumatic Cylinder

Control Regulators

Control Valve

4: Experimental System Design

- 113 -

The blue hypercolour was a thermally sensitive dye that when cold (below 22 ºC)

had a deep blue colour, but when heated became paler until turning completely

white above 31 ºC. When the dye cooled down again, it would revert to its

original deep blue colour. However, the typical change in colour from blue to

white and back again would only last for approximately one second. Thus china

eggs coated with this dye were videoed being laser processed for later analysis for

uniformity of laser coverage The dye used was “Variotherm Turquoise 25C”

supplied by Magna Colours Limited.

An alternative and more permanent system was later adopted for the analysis of

uniformity of laser coverage. This system used thermally sensitive paper, but care

had to be taken with the laser power to prevent ignition of the paper.

Unfortunately, despite many efforts, the specific thermal response profile of this

paper could not be obtained. Hence, the resulting images could only be used for

qualitative analysis of laser coverage rather than any quantitative analysis. Section

4.5.2 (Resonant Scanner with Laser Power Modulation) shows one such example

of a thermally sensitive paper scan pattern from the resonant scanner on the return

stroke.

4.5.5.2 Galvanometer Positioning

Due to the complexities of utilising the same laser source for top and side

coverage with the complex beam paths involved, once set, the galvanometer

position will not be adjustable.

Another aspect of the galvanometer positioning was with the galvanometers close

proximity to the eggs, with a possibility of the lower tail of the beam passing

under the egg and reflecting off the opposing galvanometer mirror and into the

suction cup holding the egg. This was alleviated by angling the galvanometers up

at the egg from beneath at an angle of 30°. This angle helps to both scan the

bottom of the egg, which otherwise would not get covered, and prevent the

opposing scanner from causing extraneous damage. The addition of the laser

4: Experimental System Design

- 114 -

masks described in section 4.5.2 (Resonant Scanner with Laser Power

Modulation) also helps to reduce the extraneous damage. This layout can be seen

in figure 4.14.

Fig. 4.14: Mechanical layout of tracking galvanometers.

4.5.5.3 Galvanometer Tracking

By increasing the tracking rate of the galvanometer at the leading and trailing

edges, extra laser power can be imparted to these areas to compensate for the

severe grazing incidences. The potential for actual egg size to be detected, with

the galvanometer tracking the egg to a much closer tolerance thus improving the

efficacy of the system also exists with this system.

Eggs are held at 80.5 mm centres, with the eggs being a maximum of 45 mm

diameter, they therefore have minimum spaces between eggs of 35 mm. This

represents a worst-case egg-space ratio of 60 % to 40%. Utilising the

galvanometer tracking mirror, and allowing for a 45 mm diameter egg, the beam

can be redirected onto the egg during the spaces, thus re-utilising approximately

Laser Beam Egg

Tracking Galvanometer

Resonant Scanner

Focussing Optic

4: Experimental System Design

- 115 -

35 % of the available laser power. During the course of this redirection of laser

power, the incident angle of the beam, to the critical leading/trailing edges of the

egg are also improved. Figure 4.15 shows the configuration of the resonant and

galvonometric scanners in the trial machine.

 Fig. 4.15: Scanning configuration of eggs.

To allow flexibility it was desirable to be able to vary the scan rate (allowing

tracking of fluctuations in the line speed, or different line speeds), and indeed, to

change the scan profile, to more accurately match that of the egg's shape.

It was felt that the best way to proceed was to have a selection of pre-set profiles

stored in non-volatile memory that could be output to a D/A (Digital to Analogue)

converter at every pulse from a system Shaft Encoder. While the shaft encoder

was not a very high resolution (1 mm = 0.884 pulses), the egg spacings were

80.5 mm and the egg widths 45 mm (maximum), if the galvanometer tracked each

egg for 80.5 mm, this meant that approximately 91 pulses would be received from

the encoder, compressed into a 45 mm spacing of the egg. That is, an increase of

4: Experimental System Design

the system's resolution from 1 mm to 0.505 mm, which in comparison to the laser

beam's focused spot diameter of 0.675 mm, is not significant.

Figure 4.16 shows a computer-generated linear waveform matching that of the

prototype system. The second waveform above shows a computer-generated

signal that adjusts the tracking profile to compensate for the grazing incidences on

the leading and trailing edges of the egg.

Figure 4.17

egg.

 V
0
- 116 -

Fig. 4.16: Tracking mirror scan profile

 shows the compensating wavefo

 V
Linear Waveform

0
 Compensating Waveform
s.

rm of figure 4.16 in relation to an

4: Experimental System Design

 Fig. 4.

4.6 Genera

The basic mecha

stainless steel (fo

business was th

processing equip

manufacture of

transport section

with the lasers, op

Fast Tracking
Fast Tracking
Slow Tracking

Egg - Side View
Egg – Plan View
- 117 -

17: Scan compensation to match

l Construction

nics of the research machin

od grade) by a Dutch comp

e design and manufacture o

ment, making themselves i

the egg handling requiremen

 of the machine designed by

tics and control systems requ

g
Direction of Travel
Compensating Waveform
Fast Tracking
Fast Tracking
Slow Trackin
 egg profile.

e were fabricated from 316-grade

any - Staalkat. Staalkat’s primary

f commercial egg handling and

deally suited to the design and

ts of this project. The basic egg

 Staalkat could then be populated

ired to process the eggs.

4: Experimental System Design

- 118 -

With the aforementioned control sub assemblies designed and tested, the relevant

assemblies were mounted into a control rack and connected to their relevant sub

systems. The electronic modules were housed in two 19" rack unit(s) underneath

the main machine (figure 4.18). The six DC power supply units required for the

CO2 lasers (three for each laser) were also housed in these spaces.

Fig. 4.18: Experimental machine.

The two lasers were wired in to the DC supplies, with the associated safety

control relays and contactors being held in a separate control rack. The two racks

being used to separate the high power side of the system from the low power

control systems - which are inherently more vulnerable to noise interference.

The CO2 lasers were water-cooled and required plumbing into a water feed

capable of supplying 2 gallons per minute.

The final mechanical elements to be installed were the system’s optics. All the

optics needed careful alignment, with the aid of visible HeNe lasers co-aligned

with invisible CO2 lasers.

4: Experimental System Design

- 119 -

4.7 System Control

The complete software control system (see Appendix 3: Research System Control

Program) was the last element to be completed in the system design. This was

dependant on all of the above sub sections being in place and tested.

Various modules of the software were developed in the above sections during

testing with these being reused in the final code, once tested and debugged.

However, the final software coding and testing could only begin once all of the

above had been completed. Much of this was of an iterative nature, while the

machine's control protocol was debugged and fine-tuned. The software was

written in ‘C’ [51] in a structured and modular format for the target embedded

microprocessor, an 8051 derivative, the 80C652 [52].

In order to control all of the variable parameters on the trial machine a piece of

remote control software was written in Microsoft’s Visual Basic (see Appendix 4:

Research System Remote Control Program). This software was designed to run on

a laptop PC connected to the research machine through an RS-232 serial link at

9 600 baud via an easily accessible port located at the front of the machine for this

purpose. With this software, every aspect of the machine could be both controlled

and monitored. Figure 4.19 shows a screen shot of this software.

4: Experimental System Design

- 120 -

Fig. 4.19: Screen shot of trial machine’s remote control software.

4.8 Summary

This chapter has described the philosophy behind the experimental system’s

design. With the system being designed to handle chicken eggs for breeding stock,

the design requirements for these eggs were analysed first.

The egg’s shells are approximately 0.3 mm thick [46] and are made from calcium

carbonate (CaCO3), but are brittle in nature [47]. The surface of the egg shell is

covered in pores of 10 µm to 70 µm in diameter, with these pores being

predominantly found at the broader end of the egg. The outside of the egg’s shell

is covered by a semi-permeable membrane (cuticle) offering the egg some natural

protection against bacteria. The egg white and yolk will act as a thermal heat-sink

during laser processing, conducting heat away from the egg’s surface.

4: Experimental System Design

- 121 -

The average chicken egg is 45 mm in diameter at its widest point and 60 mm tall.

In a commercial hatchery, they are stored in trays of 12 rows, each row containing

11 eggs. The eggs are at spacings of 80.5 mm between centres in the rows and are

stored in the trays with their broad end facing up. To compensate for the delicate

nature of the eggs, these are moved from their trays using rubber vacuum suction

cups to prevent damage to the egg shell or cuticle.

To process a three-dimensional object such as an egg the natural spot generated

by a laser first had to be manipulated into a line of laser light to help in the

coverage of the egg in real time. A fixed optical method for this was evaluated,

but proved prohibitively expensive (circa £6 000 per optic) and gave a poor

energy density profile along the line’s axis. The preferred approach was to use a

resonant scanner running at 300 Hz to describe a line of light. This method cost

only £300 per resonant scanner.

However, while the energy density profile of the line of laser light generated by

this system helped to compensate for the natural curvature of the egg, other

problems were introduced. At the ends of each stroke of the resonant scanner

damage to the egg’s cuticle was caused. To alleviate this a method of reducing the

laser power at this point was required. Unfortunately, the chosen laser tubes could

not respond to the required reduction in power fast enough. Hence, the adopted

approach was to physically mask off the laser at the end of each stroke.

With the egg spacings of 80.5 mm and typical widths of 45 mm there exists a

60:40 egg-space ratio. Using tracking galvonometers to redirect the available laser

power during the gaps on to the eggs, an increase in the efficient use of laser

power of 35 % can be achieved. This method also reduced the grazing incidences

on the eggs and improved uniformity of coverage.

The final optical train for the system required 21 individual optics. These were

used for the general beam delivery as well as more specific tasks such as

combining the two individual laser beams for the return stroke of the system. The

combination of the two beams required the rotation of the polarisation of one laser

4: Experimental System Design

- 122 -

beam prior to the merging of the two beams. To combine the two laser beams two

other mirrors had to be moved into position using damped pneumatic cylinders.

The mechanics of the experimental machine were constructed from 316-grade

stainless steel (food grade). Trays of contaminated eggs were taken in on one side

of the machine, passed through the central laser processing section of the machine

with the clean eggs being deposited on to a clean tray on the opposite side of the

machine.

On to the basic mechanical handling of the machine were added the lasers and

their optical and electronic control systems. The primary control system for the

machine was written in ‘C’ [51], together with an additional remote control

program written in Microsoft’s Visual Basic. This enabled a laptop computer

complete control and access to every system parameter during the commissioning

and testing of the machine.

5: Experimental Analysis

- 123 -

5 : EXPERIMENTAL ANALYSIS

5: Experimental Analysis

- 124 -

5.1 Introduction

Having completed a thorough study into the physiology of micro-organisms and

the physical parameters that can lead to their sterilisation, attention was then

turned to the optimal choice of laser for a commercial scale system. Through the

body of existing research conducted in laboratory trials on a variety of lasers and a

detailed analysis of the physical and physiological parameters involved, the CO2

laser became the overwhelming choice for such a system.

With the choice of laser firmly established it then remained to develop a system

that would be capable of delivering the required laser power in as uniform,

efficient and controllable a way as possible. This required an iterative process of

experimental procedures and theoretical analysis before the final design could be

defined.

Prior to the manufacture of the trial machine a prototype laboratory mock-up was

made incorporating all of the machine’s key design features such as the resonant

scanners and tracking galvanometers together with the proposed optical

arrangement and laser power.

Following on from the successful trials of the aforementioned prototype system,

the full trial system was then designed and manufactured.

.

5: Experimental Analysis

- 125 -

5.2 Methodology

The experimental methodologies adopted for the initial prototype trials can be

broadly categorised into two sections. The first being the preparation and

subsequent analysis of the microbiological samples used for the tests. The second

being the physical experimental configuration and operation of the trials.

These two methodologies will now be discussed individually.

5.2.1 Microbiological Methodology

In order to measure the effectiveness of a sterilisation method, a reliable and

quantifiable method of measuring the number of micro-organisms on a given

substrate is required.

As a reference for any tests, control samples will also be required. For example,

while testing for the effectiveness of sterilisation, one set of contaminated samples

should not be subject to sterilisation, this will form the control sample. The

control sample will provide a base line for the comparison with measured results

of sterilisation.

5.2.1.1 Microbial Contamination

To pre-contaminate the sample eggs prior to the laser trials, standard chicken eggs

are submersed and washed in a broth containing the desired contaminent(s). These

eggs are then transported to the test site in suitably secure and sealed packaging

clearly labelled as “biohazard”.

5: Experimental Analysis

- 126 -

5.2.1.2 Micro-organism Measurement

The number of remaining micro-organisms on the treated eggs and control

samples were counted using the total viable count (TVC) plate count method at

ADAS’ microbiology department, Wolverhampton. This method is based on

BS5763: Part 1 1991 – General guidance for the enumeration of micro-organisms

colony count technique at 30 ºC [53].

To extract the bacteria from the surface of the processed and control eggs, these

eggs were washed in a sterile broth (a separate broth for each egg). A 1 ml

quantity of each broth sample was then used to aseptically inoculate a labelled

petri dish (a dish of approximately 10 cm diameter and 1.5 cm in depth, with a

loose fitting lid).

Decimal dilutions were then prepared by using a fresh sterile pipette to transfer

1 ml of the initial inoculum (broth) into 9 ml of maximum recovery dilutent

(MRD). This procedure was repeated for as many decimal dilutions as were

required.

The dilutions were then mixed using a vortex mixer for 5 s to 10 s.

1 ml of each required dilution was used to aseptically inoculate a labelled petri

dish. (Inoculation is the introduction of micro-organisms into or onto a sterile

medium.)

15 ml of tempered plate count agar (PCA) (46 ºC ± 1 ºC) was then added to each

petri dish, carefully mixed and allowed to set. The time elapsing between the

addition of the MRD and contact with the PCA should not exceed 20 minutes.

(Agar is a gelling agent, and a long chain polysaccharide, which provides food for

the growing micro-organisms. [54])

The petri dishes were then inverted and transferred to an incubator at 30 ºC ± 1 ºC

for 72 h ± 3 h.

5: Experimental Analysis

- 127 -

Using colony-counting equipment, all plates containing between 15 and 300

colonies were counted. Dishes containing not more than 300 colonies at two

consecutive dilutions were retained, at least one of which must contain 15

colonies.

The number of micro-organisms per gram (calculated by a weighted mean from

dishes of more than one dilution) is now given by the following equation [53]. This

equation is used in preference to a simple arithmetic mean of replicate dishes from

a single dilution to reduce the standard error.

 Number of micro-organisms per gram = ()dnn
c

21 1.0+
∑ (Equation 5.1)

 Where: ∑c is sum of all colonies counted from all the dishes

retained

 n1 is number of dishes retained in the lowest (1st) dilution

 n2 is number of dishes retained in the next higher (2nd)

decimal dilution

 d is dilution factor corresponding to the lowest (1st)

dilution

For plates with 1 to 15 colonies, the colonies were counted and multiplied by the

dilution factor.

5.2.2 Experimental Configuration

The laser power for the initial prototype system was fixed at 140 Watts and could

not be readily altered by computer control. As such, at the end of the top stroke of

the resonant scanner, excess energy was applied to the egg, causing cuticle

damage. This had no detrimental effect to the kill levels of micro-organisms, but

5: Experimental Analysis

- 128 -

is potentially detrimental to the eggs in question, as previously discussed. Hence,

on the final machine, a means of preventing this damage was included via the use

of masks.

The tracking galvanometers helped maximise the efficient use of the available

laser power with a linear tracking waveform, but with further control of the

tracking waveforms, additional benefits could be obtained in achieving uniform

dose levels at the leading and trailing edges of the eggs.

The initial prototype system was implemented using a linear conveyor belt

travelling at between 150 mm·s-1 and 75 mm·s-1 and carrying seven eggs at a time

with spacings of 80.5 mm between centres. The laser used was a 140 W radio

frequency (RF) excited CO2 laser (supplied by Domino Laser Industries) and had

an output beam diameter of 5 mm. The laser beam was focused by a 250 mm Zinc

Selenide (ZnSe) focal length lens, mounted 35 mm prior to the resonant scanner.

The resonant scanner was free running at 294 Hz and its amplitude set to describe

a 50 mm line on the passing eggs. The resonant scanner was mounted prior to the

galvonometer, which itself was angled at 30° from the horizontal, ensuring

coverage of both the side and underneath of the passing eggs. Three passes were

done for each row of eggs, one pass each for the front and rear sides of the eggs

and one pass for the top. The focus point of the laser was set to be between the

closest surface of the egg and the centre of the egg, (allowing the depth of focus to

accommodate the natural curvature of the egg), for two sets of trials. A further

three sets of trials were conducted with the focus point of the laser set to be at the

closest surface of the egg.

5.3 Results

Under the above conditions, a 99.988 % (3.9 log) kill rate was achieved on 10

eggs laboratory contaminated with Salmonella enteritidis against 10 untreated

control samples at a linear velocity of 100 mm·s-1.

5: Experimental Analysis

- 129 -

Table 5.1 shows a summary of the results from these trials.

Table 5.1: Kill rates

Velocity
(mm·s-1)

Focus Kill Rate
(%)

Kill Rate
(log)

100 Mid-point 99.988 3.9

150 Mid-point 99.968 3.5

75 Closest Surface 98.994 2.0

100 Closest Surface 99.908 3.0

150 Closest Surface 99.157 2.1

5.4 Analysis

The above results clearly demonstrate that the proposed system is capable of

achieving high kill rates in a commercial-scale system, compared to previous

studies that have all been conducted in static laboratory conditions.

The trials conducted with the mid-point focus setting all gave higher kill rates

than those of the closest surface focus setting. This was expected, as the energy

density of the focused spot for the closest surface focus setting will greatly

decrease at the edges of the egg where the egg's surface is furthest from the point

of focus. The energy density also decreases naturally at this point due to the

increased grazing incidence at these extremities. The increased reduction in

energy density at the edges of the egg in these circumstances will lead directly to

a reduced kill rate.

Furthermore, a slight increase in kill rate was noticed for the lower translation

velocity of 100 mm·s-1 with the mid-point focus setting. This is as was expected,

as the lower velocity would cause greater overlap between consecutive laser spots

5: Experimental Analysis

- 130 -

so leading to an overall increase in imparted energy. However, this effect was not

consistent with the differing translation velocities for the trials conducted on the

eggs with the laser focus set to the egg’s surface. To investigate this further, more

trials need to be conducted to reduce the statistical variance of the samples, which

is thought to be the cause for discrepancy from the expected results.

A discussion of the statistical techniques used to collate and process the collected

data and a full analysis of the experimental system’s technical performance

follows below.

5.4.1 Statistical Analysis

To automate and control the collection of the trial data with subsequent statistical

analysis, a computer software package called MINITAB was used. From these

results the relative kill rates were then calculated.

5.4.1.1 Data Manipulation

In order to extrapolate meaningful results from collected data it is sometimes

necessary to use statistical tools to manipulate the raw data into a more coherent

and manageable form. For the above results one such technique was adopted, this

was the trimmed mean. A full description of which follows below.

If a sample set contains some `outliers' in its top or bottom ends, the mean or

average value is strongly influenced (becomes biased towards) the outliers. To

alleviate this potential problem, a modified mean called the trimmed mean is used.

An x % trimmed mean is such that both the top x/2 % and the bottom x/2 % of the

observations are discarded and the mean is calculated for the remaining

observations. A trimmed mean is obviously less susceptible to the effects of

extreme observations than is the arithmetic mean. It is therefore less susceptible to

5: Experimental Analysis

- 131 -

sampling fluctuation than the mean for extremely skewed distributions. All

calculations performed using MINITAB for trimmed means were done using the

10 % trimmed mean Xtr (10) (the mean calculated after omitting the smallest 5 %

and the largest 5 % of the observations).

5.4.1.2 Kill Rate Calculations

In all of the kill rate calculations performed the trimmed mean values (as

described above) were used. The trimmed mean value for the organism count of

the 10 untreated contaminated control eggs was 2 731 250.

Table 5.2 summarises the kill rate calculations for each batch of 10 eggs treated

per test.

Table 5.2: Kill rate calculations

Velocity
(mm·s-1)

Focus Trimmed
Mean

Kill Rate
(%)

Kill Rate
(log)

100 Mid-point 334 99.988 3.9

150 Mid-point 873 99.968 3.5

75 Surface 27 483 98.994 2.0

100 Surface 2 508 99.908 3.0

150 Surface 23 036 99.157 2.1

5: Experimental Analysis

- 132 -

5.4.2 System Analysis

The following discussion provides a full analysis of the prototype trial system.

Table 5.3 summarises all of the system parameters used for the above

experiments.

Table 5.3: Prototype system parameters.

Parameter Value

ZnSe Lens focal length (f) 250 mm

Laser wavelength (λ) 10.6 µm

Laser beam diameter (dL) 5 mm

Laser power 140 W

Resonant scanner frequency 294 Hz

Linear velocity 150 mm·s-1

Scan height 50 mm

The diameter of the focused laser spot is given by [31]:

(Equation 5.2)

 Where: f is the focal length of the focusing lens

 λ is the wavelength of the laser light

 dL is the laser beam diameter

 ds is the focused laser spot diameter

 mm 675.0µm 675
105

10250106.104 3

36

s ==
××

××××=∴ −

−−

π
d

Ld
fd

π
λ4 s =

5: Experimental Analysis

- 133 -

Power density in Watts per square centimetre is now given by:

 Area of focused spot = πr2 = 0.358 mm2 = 3.58 × 10-3 cm2

 cmkW 39 cm W10639
1058.3

140density Power 2-2-
3 ⋅=⋅=

×
=∴ −

(Assuming uniform beam spatial profile, TEM00)

Energy density in Joules per square centimetre is now given by:

 ms 7.1
2

294scanner resonant theof stroke single afor taken Time
1

==
−

 1-
3 smm 41229

107.1
mm 50 velocity Average ⋅=

×
=∴ −

 µs 23
41229
675.0diameter spot single travel taken to timeAverage ==∴

 ∴ Average energy density = 39 kW·cm-2 × 23 µs = 0.897 J·cm-2

However, as the resonant scanner oscillates with simple harmonic motion the

maximum velocity over the surface of the egg during the scanner’s cycle will

correspond to the minimum delivered energy dose. This can be calculated as

follows:

The distance away from the centre of the egg described by the resonant scanner at

any point in time can be given by the following equation:

5: Experimental Analysis

- 134 -

 x =X.cos(2πft) (Equation 5.3)

 Where: X is the maximum resonant scanner displacement

 f is the resonant scanner frequency

 t is the time from start of oscillation

 x is the distance from the centre at time t

Differentiating this equation with respect to time will now give us the velocity, v,

at time t:

 v =2πfX.sin(2πft) (Equation 5.4)

Clearly the maximum velocity will be given when sin(2πft) equals 1:

 ∴ Maximum velocity = 2π × 294 × 25 mm = 46 181 mm.s-1

 µs 6.14
18146
675.0diameter spot single travel taken to timeMinimum ==∴

 ∴ Minimum energy density = 39 kW·cm-2 × 14.6 µs = 0.569 J·cm-2

Now, the period of minimum velocity over the surface of the egg while traversing

a single spot diameter will correspond to the maximum delivered energy dose.

This can be calculated as follows:

The time taken to travel half of the laser spot diameter at the end of the scanner’s

stroke can be found by rearranging equation 5.3 and substituting:

5: Experimental Analysis

- 135 -

 µs 89
2942

25
2
675.025

cos

2

cos

1

1

=
××

















 −

=







=

−

−

ππf
X
x

t

 ∴ Time taken to traverse the laser spot will be 2 × 89 = 178 µs

 ∴ Maximum energy density = 39 kW·cm-2 × 178 µs = 6.942 J·cm-2

The above calculations are summarised in Table 5.4.

Table 5.4: Summary of prototype system energy densities.

Energy density J·cm-2

Minimum 0.569

Average 0.897

Maximum 6.942

Previous theoretical calculations have shown that the energy density required to

ablate a planar coating of bacteria is 0.13 J·cm-2. As discussed in section 3.2.5

(Light Absorption in Water) however various effects of the substrate and micro-

organisms being targeted may lead to a general increase in the energy density

required.

During the development of the prototype system for the above trials, a small

utility program was written in Microsoft’s Visual Basic to automate the above

calculations for a variety of trial configurations (see Appendix 2: Utility

Program). A screen shot of this utility program can be seen in figure 5.1.

5: Experimental Analysis

- 136 -

Fig. 5.1: Screen shot of energy density calculator.

An additional feature of the above utility program was the automatic generation of

a graph modelling the response of the resonant scanner and associated energy

density profile. This used the previously described equations for simple harmonic

motion together with the laser system’s key parameters. A screen shot of such a

graph using the laser system’s parameters for the prototype trial system can be

seen in figure 5.2.

5: Experimental Analysis

- 137 -

Fig. 5.2: Screen shot of energy density graph.

Figure 5.2 shows the velocity of the laser spot over the egg’s surface due to the

resonant scanner’s oscillation (in blue). The velocity of this spot can be seen to

vary from 0 m·s-1 to 46 m·s-1. The green line denotes the distance of the laser spot

from the centre point of the described scan line. Comparing this to the velocity of

the spot, it can be seen that the dwell points (zero velocity) of the resonant

scanner’s stroke occur at the extremities of the scanned line (25 mm from the

centre), while the maximum velocity of the spot occurs at the centre of the

scanner’s stroke. Finally, the red line illustrates the energy density at the laser spot

throughout the scan cycle. This clearly shows the much increased energy densities

at the extremities of the scanner’s cycle (the dwell points) as predicted. Indeed

this profile matches very closely with the observed scan pattern caught on

thermally sensitive paper (figure 4.9).

Total egg coverage now depends on the relative linear velocity of the egg to the

scanned laser beam:

5: Experimental Analysis

 Fig. 5.3: Egg passing res

 Distance travelled by egg durin

 = 150 mm·s-1 × 294-1 s

 = 0.510 mm

Hence, with a 0.675 mm diameter

0.675 mm - 0.510 mm = 0.165 mm

guaranteeing complete egg coverage

for the naturally lower energy densi

the beam’s Gaussian (TEM00) spatia

minimum overlap occurs, the reson

leading to an area of the egg shell b

will in-turn give rise to a doubling o

6.942 J·cm-2 to 13.884 J·cm-2. This i

was observed.

Now, at the centre of the resonant sc

be obtained due to overlapping laser

w
Side Vie

Direction of Travel

Velocity of

v mm·s-1
- 138 -

onant scanner b

g full cycle of

laser spot siz

under worst-ca

. Moreover, th

ty found at the

l profile. Howe

ant scanner w

eing covered tw

f the applied en

s the point at

anner’s stroke

spots on conse

t
Laser spo
e

sc

e

s

is

 e

v

il

e

w

th

cu
Overlapping Spots
am

a

th

e

 o

d

er

l

ic

rg

hi

e

ti
Resonant Scanner Strokes
.

nner:

ere will be an overlap of

conditions (at 150 mm·s-1),

verlap helps to compensate

ges of the laser spot due to

, at the same point that this

be at the end of its stroke

e in rapid succession. This

y density at this point from

ch damage to the egg shell

 least energy advantage will

ve strokes:

5: Experimental Analysis

- 139 -

 Distance travelled by egg during half cycle of scanner:

 = 0.510 mm ÷ 2

 = 0.255 mm

Thus, with a 0.675 mm diameter laser spot size there will be an overlap of

0.675 mm - 0.255 mm = 0.420 mm (at 150 mm·s-1).

These calculations are all based on the eggs travelling at a linear velocity of

150 mm·s-1 with no tracking galvanometer compensation. As this velocity is

increased or decreased, the relative decrease or increase in applied energy density

due to laser spot overlap will change proportionally. As the linear velocity is

increased above 150 mm·s-1 gaps in coverage may begin to appear (when used in

conjunction with a laser spot diameter of 0.675 mm). The tracking of the

galvonometers will help to increase the overlap at a given linear velocity.

Figure 5.4 shows a laser scan pattern caught on thermally sensitive paper. The

laser power for this particular scan pattern had been turned down to prevent the

thermally sensitive paper from igniting, as a consequence the modulation of the

laser can be clearly seen by the pattern of light and dark patches. Additionally,

this scan pattern was made with the use of the aluminium masks described in

section 4.5.2 (Resonant Scanner with Laser Power Modulation). Thus, the above

scan pattern does not exhibit the dwell points as previously seen in figure 4.9.

This scan pattern was taken while the linear velocity was set at 150 mm·s-1. A

good uniformity of coverage can be seen from this scan pattern, taking into

account the lower modulation level of the lasers.

5: Experimental Analysis

- 140 -

Fig. 5.4: Scan pattern showing

uniformity of coverage.

5.5 Summary

This chapter has described the experimental methodology and subsequent analysis

of the trial results for the proposed system. Prior to the commencement of the

trials eggs to be processed were pre-contaminated with a bacterial broth

containing Salmonella enteritidis. Once processed the remaining bacteria were

extracted from the eggs, incubated and counted using the total viable count (TVC)

plate count method taken from BS5763: Part 1 1991 – General guidance for the

enumeration of micro-organisms colony count technique at 30 ºC [53].

The trial system processed eggs at linear velocities of between 150 mm·s-1 and

75 mm·s-1 with a 140 Watt CO2 laser system. The laser was focused using a

250 mm focal length lens via a resonant scanner running at 294 Hz and describing

a 50 mm line. A linear tracking galvonometer was used to further increase the

efficiency of the available laser power. At the given linear velocities, complete

coverage was demonstrated.

5: Experimental Analysis

- 141 -

This system achieved a maximum kill rate of 99.988 % (3.9 log) for a linear

velocity of 100 mm·s-1 (calculated using the trimmed mean values for bacterial

counts) with an average energy density of 0.9 J·cm-2. This proving the efficacy of

the proposed system.

6: Discussion

- 142 -

6 : DISCUSSION

6: Discussion

- 143 -

6.1 Introduction

The objective of this study was to determine the optimum choice of a generic laser

system, and its operational parameters, to sterilise a variety of micro-organisms,

on a range of substrates, with minimal damage being caused to the substrate.

Additionally a practical embodiment of such a system was to be investigated to

provide a uniform dose with consistent sterilisation results.

With this in mind, a study of micro-organisms and their requirements for growth

and reproduction was conducted to gain an understanding of what processes could

be brought upon these organisms to sterilise them. Following on from this a

review of current sterilisation techniques looked at the different methods available

to sterilise bacteria and micro-organisms.

With a good understanding of micro-organisms and various methods of

sterilisation, the next stage was to choose the optimum laser system, and its

parameters, to kill the broadest range of micro-organisms. This was achieved with

a thorough analysis of the electromagnetic spectrum, commercially available

lasers covering the light portion of the spectrum and their differing sterilisation

effects. The general principals of light absorption, and more specifically light

absorption in water, were reviewed together with a review of the existing body of

knowledge relating to the sterilisation of micro-organisms by laser light. Finally,

an analysis of the requirements for the laser’s spatial and temporal profiles was

conducted to ascertain the optimum parameters for the selected laser.

With the knowledge gained of the bacterial kill mechanisms with laser sources,

and the choice of laser system and its key operational parameters being

established, a practical design solution had to be found that could process items to

be sterilised on a commercial-scale. A suitable practical requirement for such a

system was the sterilisation of chicken eggs from contaminating Salmonella

bacteria. The first step in designing the system being an analysis of the items to be

sterilised and their specific handling requirements. The key technical solutions to

6: Discussion

- 144 -

provide a uniform coverage of the eggs were discussed together with the specific

design requirements for this particular implementation.

The final stage of the project was to conduct live biological trials on the

completed machine. This required the correct preparation and analysis of

biologically contaminated samples together with the physical experimental

configuration. Following the trials, an in-depth analysis of the experimental

results and the system’s technical performance was conducted.

6.2 Discussion

The two most common methods of sterilisation for commercial purposes are

chemical disinfectants and heat. One of the primary reasons for the choice of topic

for this thesis, following the Salmonella scare with eggs in the United Kingdom in

1988, was to find a commercially acceptable method of sterilising the surface of

hatching eggs that did not involve chemical disinfectants currently employed.

That is, to develop a safe and efficient reagentless method of sterilisation.

While chemical disinfectant methods are cheap and commonplace, they do have

some pitfalls. When the chemicals are fresh and being used at their optimum

parameters (temperature and concentrations), they can prove very effective.

However, as the system is used the chemicals become diluted and performance

degrades. The safe disposal of the used chemicals is also becoming an increasing

problem, particularly with such government regulations as COSHH (Control Of

Substances Hazardous to Health).

Heat sterilisation methods are extremely efficient, do not use chemicals and hence

do not leave any harmful residues. However, traditional heating methods also heat

the whole substrate as well as the micro-organisms. For substrates that are heat

sensitive, this method cannot be used and hence alternative methods such as

chemical disinfectants must be sought.

6: Discussion

- 145 -

Hence, the development of a sterilisation method that can rapidly heat the external

surface of a substrate to kill bacteria, without raising the internal temperature of

the substrate, is much desired.

Using light to sterilise items is not a new concept, with the two sterilisation

mechanisms being photo-chemical (ultra-violet light) and photo-thermal (infrared

light). The first method targets the cell’s nucleic acids and proteins as

chromophores, causing cell mutagenicity. The second method targets water as the

primary chromophore, causing heating and ultimately cell death.

Vegetative bacteria are comprised 80 % water by weight. However, ultra-violet

light is absorbed in water. Hence, a significant proportion of incident ultra-violet

light energy will be absorbed by the water before it reaches the cell’s proteins and

nucleus, where the majority of its bactericidal activity would take place. Ultra-

violet (excimer) lasers are relatively expensive compared to alternative laser

technologies such as the infrared CO2 laser, and use halogen gases as part of their

lasing medium, which are not considered environmentally friendly. These lasers

only operate in pulsed modes, thus presenting some problems for uniformity of

coverage on moving product as would be typically required on a commercial

sterilisation system.

The infrared light generated by a CO2 laser however, targets the cell’s water

content, in which it is highly absorbed, as its chromophore. For this reason the

sterilisation efficiency of a CO2 laser compared to an equivalent excimer laser is

much greater. The CO2 lasers are also continuous wave devices, so aiding the

uniform processing of moving objects. It is for these reasons that the continuous

wave CO2 laser was taken as the optimal choice for a generic laser-based

sterilisation system.

By default, lasers generate a spot of laser light as a result of their lasing action.

However, this spot of light needs to cover the complete surface area of a three-

dimensional object as fast and efficiently as possible. From this viewpoint a spot

of laser light is the worst starting point possible. To cover a range of three-

dimensional objects it is far better to first manipulate the spot of laser light into a

6: Discussion

- 146 -

line of laser light, which can then be utilised to treat an object through relative

motion between the line of laser light and the object being treated. The

manipulation of the laser beam into a line of laser light was achieved with a

resonant scanner compensating for the natural curvature of the egg from the y-

plane to the z-plane. This method would also be applicable for any other

approximately spherical object requiring treatment.

As an additional aid to track moving product a tracking galvonometer was used to

make the most efficient use of laser power during the gaps found between items

on a typical processing line. This method also helped to compensate for the

natural curvature of spherical objects from the x-plane to the z-plane.

Table 6.1 shows the key results of this study in comparison to two laboratory

trials conducted by Watson et al. [7] and Mullarky et al. [42] with CO2 lasers.

However, it is very difficult to extract a high degree of coherence between these

results for the following reasons.

• The substrates on which the trials were conducted varied. This study used

chicken eggs while Watson et al. used nutrient agar and Mullarky et al.

used porcine skin.

• The bacteria on which the trials were conducted varied. This study used

Salmonella enteritidis while Watson et al. used Escherichia coli and

Mullarky et al. used Escherichia coli and Staphylococcus aureus. While

Escherichia coli and Salmonella enteritidis are genetically similar (about

60 % to 70 %), they may still be sufficiently different to have an effect on

the results.

• A direct, quantifyable kill rate for Watson et al. does not exist. While their

trials prove the CO2 laser to be the optimal choice for bacterial sterilisation,

the system provided a killing area of 1.2 cm2 of a total laser beam area of

2.3 cm2. Unfortunately, from this a kill rate cannot be extrapolated.

6: Discussion

- 147 -

Table 6.1: Comparison of CO2 laser sterilisation trials.

Laser
Power
(W)

Spot size

(mm)

Power
Density
(W·cm-2)

Duration

(s)

Energy
Density
(J·cm-2)

Kill rate

(log)

140 a 0.7 39 000 23 × 10-6 0.90 4

600 b 8.6 262 30 × 10-3 7.88 Unknown

25 c 3 354 10 3 540 7

a This thesis.
b Watson et al.
c Mullarky et al.

From Table 6.1 it can seen that the variety of laser power levels and spot sizes for

the different trials contribute to roughly equal power densities for Watson et al.

and Mullarky et al. but a power density of two times greater order of magnitude

for this study.

While this trial had the highest power density, the corresponding energy density

was the lowest due to the extremely short duration. However, this low energy

density still proved highly efficient in bacterial sterilisation. The time in which the

energy is imparted to the bacteria is thought to be very significant. The shorter the

duration for a given energy density being advantageous as the thermal shock to

the bacteria is greater and the energy has less time to diffuse into the surrounding

substrate.

The effects of cold thermal shocks to precipitate increased sterilisation in

comparison to slow cooling have been documented [13], hence it is logical to

assume that hot thermal shocks should also increase sterilisation efficiency

compared to slower increases in temperature.

6: Discussion

- 148 -

6.3 Conclusions

The overriding conclusion from this body of work is that not only is the CO2 laser

the best theoretical choice of laser for a generic bacterial sterilisation system, but

the prior evidence gained in various practical laboratory experiments supports this

theory. The CO2 laser is also the most common and widely available laser system

for commercial applications on the market today. Furthermore, the migration of

this proven laboratory technology into a working commercial system capable of

achieving bacterial kill rates of 99.988 % (3.9 log) at its first iteration shows the

long term potential of this technology.

In comparison with existing methods of sterilising hatching eggs, such as

chemical disinfectants, the proposed system is equally efficient at killing bacteria.

However, the laser system has some disadvantages in being substantially more

costly and has a lower throughput than the conventional chemical systems. The

laser system can also offer many benefits as it can be switched on almost

instantly, without having to wait half an hour or more for the chemical bath to

achieve correct operating temperature. Moreover, the laser system does not use

any harmful chemicals and as such, chemical disposal costs are not required.

While only one practical embodiment of this technology has been demonstrated in

this study, the potential for other embodiments clearly exists utilising the core

elements of the design. This highlights the true long-term potential of this

technology to be a valid adjunct to existing commercial sterilisation technologies

in the future.

6: Discussion

- 149 -

6.4 Future Work

While the overall conclusion of this study shows that a generic laser system can

provide efficient bacterial sterilisation on a commercial scale, much work needs to

be done to gain a fuller and deeper understanding of the exact mechanisms

involved.

Such an understanding would enable predictions of sterilisation efficiency to be

made based on the bacteria likely to be encountered on a given substrate. Ideally

these predictions should be able to describe the required laser energy density

levels, and other system parameters, to provide a minimum predetermined kill

level on a given substrate, without causing any detrimental effects to the substrate

or product being treated.

Figure 6.1 shows a graph of what may be expected from an operating window of

desired kill rate versus energy density. As the energy density level increases, the

kill rates experienced will also increase. For any sterilisation system there will be

a minimum acceptable kill rate (Kmin), which must be consistently obtained. This

minimum kill rate will correspond to a minimum energy density level (Emin).

However, above a certain energy density level damage may be sustained to the

substrate being processed. In this case it is the energy density level above which

the egg’s cuticle is compromised (Ecd).

From figure 6.1, the operating window can be seen shaded in grey. Energy

densities below this level will have less than acceptable kill rates, while energy

density levels above this window will cause damage to the substrate being

processed. Ideally such a graph should be able to be predicted for any bacterial /

substrate combination.

6: Discussion

- 150 -

 Fig. 6.1: Graph of system operating parameters.

To increase the confidence levels on the results presented in this thesis, trials

should be conducted on a greater number of samples, preferably with a broader

range of system parameters and contaminating micro-organisms. The larger

sample size will be statistically more robust, so increasing the confidence and

validity of the presented results. The broader range of system parameters and

contaminating micro-organisms will help to give a better understanding of the

operating window within which a typical system should operate.

The majority of existing trials to date have been conducted on artificially

contaminated samples. To prove the efficiency of laser sterilisation systems in real

world scenarios, quantifiable trials based on naturally contaminated samples need

to be conducted. For the example of chicken eggs used in this thesis, hatchability

Energy Density (J·cm-2)
Emin Ecd

Kmin

Kill Rate (%)

Operating Window

6: Discussion

- 151 -

is one such quantifiable metric. In this case, the successful sterilisation of the

egg’s surface should directly translate into an increase in hatchability.

Eggs free of contaminating micro-organisms (particularly Salmonella enteritidis)

allow disease-free chicks to be incubated. Eggs contaminated with micro-

organisms can lead to a reduction of chick viability through contracted diseases.

These diseases may be contracted via the micro-organisms passing through the

pores of the egg shell and into the developing embryo. Alternatively, the emerging

chick may be exposed to the micro-organisms on the shell’s surface as it breaks

out of the shell. Any increase in hatchability would give a strong financial case for

the commercial implementation of such a system.

In a sterilisation procedure it is desirable for the treated substrate to remain

sterilised for the greatest duration subsequent to treatment. Clearly, organism re-

growth would be a problem for any sterilisation system. While areas of laser-

sterilised substrate have been shown to exhibit no organism re-growth in

laboratory trials [7], further work needs to be conducted on substrates and

mechanisms more indicative of commercial applications.

The use and efficiency of a laser based sterilisation system will be highly

dependent on the substrate being treated. Such factors that may have an effect

might be for example; surface texture, thermal conductivity, colour and chemical

composition. With this in mind a wide variety of substrates need to be treated to

build a knowledge base for reference and comparison.

In addition to experimental evidence, it is desirable to model the sterilisation

process as accurately as possible. Such a model should be able to predict system

parameters for a given substrate and processing requirements, and be in close

agreement with the body of empirical evidence. Such modelling may incorporate

thermal modelling of a complex, three-dimensional, layered substrate where the

rate of energy transfer of the impinging laser beam becomes highly important.

Some work to this aim has been attempted by Wang et al. [55] with the thermal

model of a laser interacting with a liquid suspension of Escherichia coli.

6: Discussion

- 152 -

In addition to the energy density being applied to a substrate to promote efficient

sterilisation, the time in which this energy is imparted is thought to be extremely

important. Further work to research this hypothesis by both experimental study

and theoretical modelling is suggested. Taking this to extremes, a study conducted

by Gribin et al. [56] has shown that extremely short (30 ns) high power pulses from

a Nd:YAG laser can produce “micro-blasts” in liquid leading to the mechanical

destruction of bacteria.

In the real world, items needing to be sterilised will come in all shapes and sizes.

In order to provide uniform dose levels for irregular three-dimensional shapes

complex scanner systems will need to be devised, with different shaped objects

requiring lines of laser light with differing energy density profiles. These will

present many engineering challenges in order to both satisfy the above

requirements while keeping the overall system costs as low as possible.

7: Bibliography

- 153 -

7 : BIBLIOGRAPHY

7: Bibliography

- 154 -

[1] ELION, H. A. Laser Systems and Applications. Pergamon Press,

1967.

[2] SAKS, N. M. and ROTH, C. A. Ruby Laser as a Microsurgical

Instrument. Science, 1963, Vol. 141, pp. 46-47.

[3] MCGUFF, P. E. and BELL, E. J. The Effect of Laser Energy

Radiation on Bacteria. Medical and Biological Illustration, 1966, pp.

191-194.

[4] ADRIAN, J. C. and GROSS, A. A new Method of Sterilization: the

CO2 Laser. Journal of Oral Pathology, 1979, 8, pp. 60-60.

[5] SCHULTZ, R. J. et al. Bactericidal Effects of the Nd:YAG Laser: in

vitro Study. Lasers in Surgery and Medicine, 1986, 6, pp. 445-448.

[6] POWELL, G. L. and WHISENANT, B. K. Comparison of Three

Lasers for Dental Instrument Sterilization. Lasers in Surgery and

Medicine, 1991, 11, pp. 69-71.

[7] WATSON, I. A. et al. Comparative Bactericidal Activities of Lasers

Operating at Seven Different Wavelengths. Journal of Biomedical

Optics, October 1996, 1(4), pp. 466-472.

[8] PRODUCT LITERATURE. Pall Gelman.

[9] GUTHE, K. F. The Physiology of Cells. Macmillan, 1968.

[10] SISTROM, W. R. Microbial Life. Holt, Rinehart, Winston, 1969.

[11] SMITH, K. M. Viruses. Cambridge University Press, 1962.

[12] STEVENSON, G. The Biology of Fungi, Bacteria and Viruses.

Arnold, 1970.

7: Bibliography

- 155 -

[13] HAWKER, L. E. and LINTON, A. H. Micro-organisms. Arnold,

1979.

[14] SYKES, J. B. The Oxford Concise Dictionary. 7th Edition. Oxford

University Press, 1984.

[15] GAYFORD, C. G. Energy and Cells. Macmillion, 1986.

[16] DOYLE, M. P., BEUCHAT, L. R. and MONTVILLE, T. J. Food

Microbiology Fundamentals and Frontiers. ASM Press, 1997.

[17] Salmonella Information. URL: http://www.salmonella.org/info.html

[01 May 2002]

[18] MAURICE, J. The Rise and Rise of Food Poisoning. New Scientist,

17 December 1994, pp. 28-33.

[19] O’DOHERTY, J. Validating Radiation Sterilization. Medical Device

Technology, July/August 1997.

[20] MORTIMER, C. E. Chemistry, a Conceptual Approach. D. Van

Nostrand, 1975.

[21] DUNN, J. et al. Sterilization using Pulsed White Light. Medical

Device Technology, July/August 1997.

[22] DUNN, J. Pulsed Light and Pulsed Electric Field for Foods and

Eggs. Poultry Science, 1996, 75, pp. 1133-1136.

[23] PÄTZEL, R. Once a Scientific Tool the Excimer now fills many

roles. The Photonics Design and Applications Handbook. Laurin

Publishing Co. Inc., 1995, pp. 288-295.

7: Bibliography

- 156 -

[24] MACMILLAN, J. D. et al. Lethal Photosensitization of

Microorganisms with Light from a Continuous-wave Gas Laser.

Photochemistry and Photobiology, 1966, Volume 5, pp. 555-565.

[25] WILSON, M., DOBSON, J. and HARVEY, W. Sensitization of Oral

Bacteria to Killing by Low-Power Laser Radiation. Current

Microbiology, 1992, Vol. 25, pp. 77-81.

[26] GRAHAM, G. and MIELNIK,T. J. Industrial Low Temperature Gas

Plasma Sterilisation. Medical Device Technology, July/August 1997.

[27] McBEE, L. E. Innovative Methods of Energy Transfer. Poultry

Science, 1996, 75, pp. 1137-1140.

[28] LAWRENCE, C. W. Cellular Radiobiology. Arnold, 1971.

[29] BROOKES, M. Day of the Mutators. New Scientist, 14 February

1998, pp. 38-42.

[30] CARDARELLI, F. Scientific Unit Conversion. Springer, 1998.

[31] WILSON, J. and HAWKES, J. F. B. Lasers, Principles and

Applications. Prentice Hall, 1987.

[32] GWYNNE, P. The Photonics Design and Applications Handbook.

Laurin Publishing Co. Inc., 1995.

[33] LERMAN, S. Radiant Energy and the Eye. Macmillan, 1980.

[34] YARBOROUGH, J. M. Taking the Confusion out of Matching

Medical Lasers. The Photonics Design and Applications Handbook.

Laurin Publishing Co. Inc., 1995, pp. 307-310.

7: Bibliography

- 157 -

[35] KAROUTIS, A. D. et al. Bactericidal Effect of ArF Excimer Laser

Radiation. on Gram-Negative Bacteria. Lasers in the Life Sciences,

1996, 7(1), pp. 59-70.

[36] HAGMANN et al. Method of Surface-cleaning and/or Sterilizing

Optical Components, Especially Contact Lenses. August 1995.

United States Patent 5,439,642.

[37] FRUCHT-PERY, J. et al. The Effect of the ArF Excimer Laser on

Candida albicans in vitro. Graefe's Archive for Clinical and

Experimental Othalmology, 1993, pp. 413-415.

[38] HIBST, R. et al. Er:YAG laser for endodontics: efficiency and

safety. SPIE, 1997, Volume 3192, pp. 14-21.

[39] WATSON, I. A. et al. Nd:YAG Laser Sterilization of Escherichia

coli and Bacillus stearothermophilus. Japan: CLEO/LEOS Pacific

Rim, July 1995, Paper THL4.

[40] WARD, G. D. et al. Inactivation of Bacteria and Yeasts on Agar

Surfaces with High Power Nd:YAG Laser Light. Letters in Applied

Microbiology, 1996, Vol. 23, pp. 136-140.

[41] ROONEY, J. et al. Laboratory Investigation of the Bactericidal

Effect of a Nd:YAG Laser. British Dental Journal, 22 January 1994,

pp. 61-64.

[42] MULLARKY, M. B., NORRIS, C. W. and GOLDBERG, I. D. The

Efficiency of the CO2 Laser in the Sterilization of Skin Seeded with

Bacteria: Survival at the Skin Surface and in the Plume Emissions.

Laryngoscope, February 1985, 95, pp. 186-187.

[43] AL-QATTAN, M. M. et al. Wound Sterilization: CO2 Laser Versus

Iodine. British Journal of Plastic Surgery, 1989, Vol. 42, pp. 380-

384.

7: Bibliography

- 158 -

[44] PRATT, Jr., G. W. Method of Altering Biological and Chemical

Activity of Molecular Species. March 1976. United States Patent

3,941,670.

[45] HOOKS, T. W. et al. Use of Carbon Dioxide Laser in Sterilization

of Endodontic Reamers. Journal of Oral Surgery, March 1980, pp.

263-265.

[46] OVERFIELD, N. D. Quality Testing of Eggs: Reference Book 428.

Her Majesty's Stationary Office, 1982.

[47] Eggcyclopedia – Shell. American Egg Board. URL:

http://www.aeb.org/eggcyclopedia/shell.html [10 May 2002]

[48] PHIL CANNING. personal communication. ADAS, 24 March 1995.

[49] Eggcyclopedia – Albumen. American Egg Board. URL:

http://www.aeb.org/eggcyclopedia/albumen.html [10 May 2002]

[50] INFRARED GAS LASERS - INSTRUCTION MANUAL. Synrad.

31 May 1991.

[51] KERNIGHAN, B. W. and RITCHIE, D. M. The C Programming

Language. 2nd Edition. Prentice Hall, 1988.

[52] ANON. 80C51-based 8-bit Microcontrollers: Data Book IC20.

Philips Semiconductors, March 1994.

[53] INNTERNAL CORRESPONDENCE. Total Viable Count by the

Plate Count Method. ADAS, June 1994.

[54] PAWSEY, R. K. Techniques with bacteria.Hutchinson Educational,

1974.

7: Bibliography

- 159 -

[55] WANG, R. K. et al. Temperature Distribution in Escherichia coli

Liquid Suspensions During Irradiation by a High-powered Nd:YAG

Laser for Sterilization Applications. Journal of Biomedical Optics,

July 1997, 2(3), pp. 295-303.

[56] GRIBIN, S. et al. Liquid Disinfection Using Power Impulse Laser.

Proceedings of the SPIE, 1996, Volume 2714, pp. 229-237.

8: Appendices

- 160 -

8 : APPENDICES

8: Appendices

- 161 -

8.1 Appendix 1: Prototype Trial Results

The following data for the prototype trial were taken from the output of the

Minitab computer statistical analysis program used to collate and analyse these

results.

• C1 are the data for 10 untreated control eggs.

• C2 are the data for 10 eggs treated at 150 mm·s-1 and mid focus

• C3 are the data for 10 eggs treated at 100 mm·s-1 and mid focus

• C4 are the data for 10 eggs treated at 100 mm·s-1 and surface focus

• C5 are the data for 10 eggs treated at 150 mm·s-1 and surface focus

• C6 are the data for 10 eggs treated at 75 mm·s-1 and surface focus

Eggs contained within data sets C2 and C3 were treated with the laser focus set to

half-way between the egg’s surface and centre point, while eggs contained within

data sets C4 to C6 were treated with the laser focus at the egg’s surface.

The following is a brief description of the symbols used in the Minitab output:

N The number of observations.

MEAN The arithmetic mean of the N observations.

MEDIAN The median of the N observations.

TRMEAN The trimmed mean of the N observations.

STDEV The standard deviation of the N observations.

SEMEAN The standard error of the arithmetic mean.

MINIMUM The smallest observation of N observations.

MAXIMUM The largest observation of N observations.

Q1 The first quartile of N observations.

Q3 The third quartile of N observations.

8: Appendices

- 162 -

MTB > describe c1-c6

 N MEAN MEDIAN TRMEAN STDEV SEMEAN
C1 10 3285540 1200000 2731250 3991435 12662203
C2 10 1049 190 873 1335 422
C3 10 3667 90 334 10668 3373
C4 10 55008 95 2508 166989 52807
C5 10 27132 14200 23036 32316 10219
c6 10 46007 6500 27483 82164 25983

 MIN MAX Q1 Q3
C1 5400 11000000 145000 7025000
C2 10 3500 30 2325
C3 0 34000 20 1125
C4 20 530000 30 5625
C5 30 87000 273 58500
c6 210 240000 255 65250

MTB > print c1-c6

ROW 1 2 3 4 5 6

1 6700000 3500 90 20 30 37000
2 190000 10 90 30 23000 150000
3 100000 30 1200 530000 40 380
4 11000000 290 20 30 55000 210
5 1200000 30 110 250 69000 19000
6 5400 90 34000 1500 2500 8800
7 8000000 1600 0 120 87000 4200
8 160000 2700 1100 18000 5400 210
9 1200000 40 20 70 29000 270
10 4300000 2200 40 60 350 240000

MTB > Save ‘H:\MINITAB\egg3010.mtw’.

Worksheet saved into file: H:\MINITAB\egg3010.mtw
MTB > stop
*** Minitab Release 8.2 *** Minitab, Inc. ***

8: Appendices

- 163 -

8.2 Appendix 2: Utility Program

The following listings detail the software developed for the energy density

calculator / modelling utility program written in Microsoft’s Visual Basic

language (version 4).

Being of a visual / object oriented nature, much of the software code generated by

the Visual Basic program pertains to the description of the visual objects (buttons,

textboxes and graphs for example). As this code is quite voluminous and does

little to add to the calculations and algorithms used within the described utility,

these have been omitted from the listings below for the sake of brevity.

8.2.1 global.bas

Global scanner_frequency
Global scanner_amplitude
Global pwr_density
Global spot_size
Global min_energy
Global av_energy

8.2.2 energy.frm

Function arccos(x)
 arccos = Atn(-x / Sqr(-x * x + 1)) + 2 * Atn(1)
End Function

Private Sub About_Click()
 aboutnrg.Show 1
End Sub

8: Appendices

- 164 -

Private Sub amplitude_Change()
If Val(amplitude.Text) > 0 And Val(frequency.Text) > 0 Then
 av = (Val(power_density.Caption) * Val(spot_diameter.Caption)) /
(Val(amplitude.Text) * Val(frequency.Text) * 2)
 av_energy = av
 energy_av.Caption = " " + Format(Str$(av), "0.000")
 Min = (Val(power_density.Caption) * Val(spot_diameter.Caption)) /
(Val(amplitude.Text) * Val(frequency.Text) * 3.14159)
 energy_min.Caption = " " + Format(Str$(Min), "0.000")
 halfamp = Val(amplitude.Text) / 2
 Max = (Val(power_density.Caption) * arccos((halfamp -
(Val(spot_diameter.Caption) / 2)) / halfamp)) / (Val(frequency.Text) * 3.14159)
 energy_max.Caption = " " + Format(Str$(Max), "0.000")
Else
 energy_av.Caption = ""
 energy_min.Caption = ""
 energy_max.Caption = ""
End If
 scanner_amplitude = Val(amplitude.Text)
End Sub

Private Sub beam_diameter_Change()
If Val(beam_diameter.Text) > 0 Then
 spot = (4 * Val(wavelength.Text) * Val(focal_length.Text)) / (3.14159 *
Val(beam_diameter.Text) * 1000)
 spot_diameter.Caption = " " + Format(Str$(spot), "0.000")
 spot_um.Caption = " " + Format(Str$(spot * 1000), "0")
Else
 spot_diameter.Caption = ""
 spot_um.Caption = ""
 power_density.Caption = ""
End If
End Sub

Private Sub focal_length_Change()
If Val(beam_diameter.Text) > 0 Then
 spot = (4 * Val(wavelength.Text) * Val(focal_length.Text)) / (3.14159 *
Val(beam_diameter.Text) * 1000)
 spot_diameter.Caption = " " + Format(Str$(spot), "0.000")
 spot_um.Caption = " " + Format(Str$(spot * 1000), "0")
Else
 spot_diameter.Caption = ""
 spot_um.Caption = ""
 power_density.Caption = ""
End If
End Sub

Private Sub Form_Load()
 Move (Screen.Width - Width) \ 2, (Screen.Height - Height) \ 2
 wavelength.Text = "10.6"
 beam_diameter.Text = "5"
 focal_length.Text = "250"
 power.Text = "140"
 frequency.Text = "294"
 amplitude.Text = "50"
End Sub

Private Sub frequency_Change()
If Val(amplitude.Text) > 0 And Val(frequency.Text) > 0 Then
 av = (Val(power_density.Caption) * Val(spot_diameter.Caption)) /
(Val(amplitude.Text) * Val(frequency.Text) * 2)
 av_energy = av
 energy_av.Caption = " " + Format(Str$(av), "0.000")
 Min = (Val(power_density.Caption) * Val(spot_diameter.Caption)) /
(Val(amplitude.Text) * Val(frequency.Text) * 3.14159)
 min_energy = Min
 energy_min.Caption = " " + Format(Str$(Min), "0.000")
 halfamp = Val(amplitude.Text) / 2
 Max = (Val(power_density.Caption) * arccos((halfamp -
(Val(spot_diameter.Caption) / 2)) / halfamp)) / (Val(frequency.Text) * 3.14159)
 energy_max.Caption = " " + Format(Str$(Max), "0.000")
Else

8: Appendices

- 165 -

 energy_av.Caption = ""
 energy_min.Caption = ""
 energy_max.Caption = ""
End If
 scanner_frequency = Val(frequency.Text)
End Sub

Private Sub Graph1_Click()
 Graph_form.Show 1
End Sub

Private Sub power_Change()
If Val(spot_diameter.Caption) > 0 Then
 pwr = Val(power.Text) / (3.14159 * ((Val(spot_diameter.Caption) / 2) ^ 2))
 power_density.Caption = " " + Format(Str$(pwr * 100), "#####")

Else
 power_density.Caption = ""
End If
End Sub

Private Sub power_density_Change()
If Val(amplitude.Text) > 0 And Val(frequency.Text) > 0 And
Val(spot_diameter.Caption) > 0 Then
 av = (Val(power_density.Caption) * Val(spot_diameter.Caption)) /
(Val(amplitude.Text) * Val(frequency.Text) * 2)
 energy_av.Caption = " " + Format(Str$(av), "0.000")
 Min = (Val(power_density.Caption) * Val(spot_diameter.Caption)) /
(Val(amplitude.Text) * Val(frequency.Text) * 3.14159)
 energy_min.Caption = " " + Format(Str$(Min), "0.000")
 halfamp = Val(amplitude.Text) / 2
 Max = (Val(power_density.Caption) * arccos((halfamp -
(Val(spot_diameter.Caption) / 2)) / halfamp)) / (Val(frequency.Text) * 3.14159)
 energy_max.Caption = " " + Format(Str$(Max), "0.000")
Else
 energy_av.Caption = ""
 energy_min.Caption = ""
 energy_max.Caption = ""
End If
 pwr_density = Val(power_density.Caption)
End Sub

Private Sub Quit_button_Click()
 End
End Sub

Private Sub spot_diameter_Change()
If Val(spot_diameter.Caption) > 0 Then
 pwr = Val(power.Text) / (3.14159 * ((Val(spot_diameter.Caption) / 2) ^ 2))
 power_density.Caption = " " + Format(Str$(pwr * 100), "#####")
Else
 power_density.Caption = ""
End If
 spot_size = Val(spot_diameter.Caption)
End Sub

Private Sub wavelength_Change()
If Val(beam_diameter.Text) > 0 Then
 spot = (4 * Val(wavelength.Text) * Val(focal_length.Text)) / (3.14159 *
Val(beam_diameter.Text) * 1000)
 spot_diameter.Caption = " " + Format(Str$(spot), "0.000")
 spot_um.Caption = " " + Format(Str$(spot * 1000), "0")
Else
 spot_diameter.Caption = ""
 spot_um.Caption = ""
 power_density.Caption = ""
End If
End Sub

8: Appendices

- 166 -

8.2.3 graph_form.frm

Private Sub Command1_Click()
 graph_present = 0
 Unload Me
End Sub

Private Sub Command2_Click()
 Graph1.GraphType = 6
End Sub

Function arccos(x)
 If x = 1 Then
 arccos = 0
 ElseIf x = -1 Then
 arccos = 3.14159
 Else
 arccos = Atn(-x / Sqr(-x * x + 1)) + 2 * Atn(1)
 End If
End Function

Private Sub Form_Load()

 Move (Screen.Width - Width) \ 2, (Screen.Height - Height) \ 2
 Graph1.DataReset = 1
 Graph1.ThisPoint = 1
 halfamp = scanner_amplitude / 2
 period = 1 / scanner_frequency
 steps = 0.000001
 y = 0

 For x = 0 To period / 2 Step steps
 velocity = 2 * 3.14159 * scanner_frequency * halfamp * Sin(2 * 3.14159 * x
* scanner_frequency)
 distance = halfamp * Cos(2 * 3.14159 * x * scanner_frequency)

 If (distance + (spot_size / 2)) > halfamp Then
 d1 = halfamp - ((distance + (spot_size / 2)) - halfamp)
 Else
 d1 = distance + (spot_size / 2)
 End If
 If (distance - (spot_size / 2)) < -halfamp Then
 d2 = -halfamp - ((distance - (spot_size / 2)) + halfamp)
 Else
 d2 = distance - (spot_size / 2)
 End If
 t1 = arccos(d1 / halfamp) / (2 * 3.14159 * scanner_frequency)
 t2 = arccos(d2 / halfamp) / (2 * 3.14159 * scanner_frequency)
 tend = 1 / (2 * scanner_frequency)
 If (distance + (spot_size / 2)) > halfamp Then t1 = -t1
 If (distance - (spot_size / 2)) < -halfamp Then t2 = (tend - t2) + tend
 t3 = t2 - t1
 en = pwr_density * t3 * 10

 y = y + 1

 If y > 2 Then
 Graph_form.Graph1.NumPoints = Graph_form.Graph1.NumPoints + 1
 End If

 If y > 1 Then
 Graph_form.Graph1.ThisPoint = Graph_form.Graph1.ThisPoint + 1
 End If

 Graph1.ThisSet = 1
 Graph_form.Graph1.GraphData = velocity / 1000

8: Appendices

- 167 -

 Graph1.ThisSet = 2
 If Graph1.GraphType = 7 And distance < 0 Then distance = -distance
 Graph_form.Graph1.GraphData = distance

 Graph1.ThisSet = 3
 Graph_form.Graph1.GraphData = en

 Next x
End Sub

Private Sub Form_Unload(Cancel As Integer)
 graph_present = 0
End Sub

8: Appendices

- 168 -

8.3 Appendix 3: Research System Control Program

The following section details the control program for the trial machine. This

program was written in ’C’ for the 8051 series embedded micro-controller. The

program is broken down into the following modules, each handling a specific

group of closely related functions.

Table Appendix 3.1: List of ’C’ program files for trial system

‘C’ File Description

buzzer.c Sounds and alerts for onboard buzzer.

eeprom.c I2C serial E2PROM reading and writing routines.

galvos.c Galvonometer control routines.

i2c.c I2C system bus control routines.

lcd_text.c LCD display routines.

rs232.c Low level RS-232 serial communications routines.

time.c System delay / timing routines.

egg1.c Main control program.

Associated with each ’C’ file is a corresponding header file or ‘.h’ file, which

describes the functions to be found in the particular ’C’ file together with

definitions specific to that file.

The code for these files is listed below:

8: Appendices

- 169 -

8.3.1 buzzer.h

#ifdef _BUZZER_

 void okbuzzer (void); // okbuzzer sound
 void click (void); // key click, card click sound
 void buzzer (void); // error buzzer sound
 extern delay_us (unsigned char);

#else

 extern void okbuzzer (void); // okbuzzer sound
 extern void click (void); // key click, card click sound
 extern void buzzer (void); // error buzzer sound

#endif

sbit BUZZER1 = 0xb4; // buzzer, pin 3.4
sbit BUZZER2 = 0xb5; // buzzer, pin 3.5

8: Appendices

- 170 -

8.3.2 buzzer.c

#define _BUZZER_

#include <buzzer.h>

/***/
/* Name: click */
/* Description: sound a small click on the buzzer */
/* Calls: delay_us */
/* Input: - */
/* Return Value: - */
/***/

void click (void)
{
 unsigned char x;
 x = 5; /* set to loop 10 times */
 while (x)
 {
 BUZZER1 = 1;
 BUZZER2 = 0;
 delay_us (0xff); /* delay 255us */
 delay_us (0xff); /* delay 255us */
 BUZZER1 = 0;
 BUZZER2 = 1;
 delay_us (0xff); /* delay 255us */
 delay_us (0xff); /* delay 255us */
 x--; /* dec. loop counter */
 }

 BUZZER1 = 0;
 BUZZER2 = 0;
}

/***/
/* Name: buzzer */
/* Description: sounds error beep on buzzer */
/* Calls: delay_us */
/* Input: - */
/* Return Value: - */
/***/

void buzzer (void)
{
 unsigned char x;
 x = 200; /* set loop 200 times */

 while (x)
 {
 BUZZER1 = 1;
 BUZZER2 = 0;

 delay_us (0xff); /* delay 255us */
 delay_us (0xff); /* delay 255us */
 delay_us (0xff); /* delay 255us */

 BUZZER1 = 0;
 BUZZER2 = 1;

 delay_us (0xff); /* delay 255us */
 delay_us (0xff); /* delay 255us */
 delay_us (0xff); /* delay 255us */
 x--; /* dec. loop counter */
 }

 BUZZER1 = 0;
 BUZZER2 = 0;
}

8: Appendices

- 171 -

/***/
/* Name: okbuzzer */
/* Description: sounds acknowledge sound on buzzer */
/* Calls: delay_us */
/* Input: - */
/* Return Value: - */
/***/

void okbuzzer (void)
{
 unsigned char x;
 unsigned char y;
 y = 3;

 while (y)
 {
 if (y == 3)
 x = 25; /* set loop for 25 */
 if (y == 2)
 x = 50; /* set loop for 50 */
 if (y == 1)
 x = 100; /* set loop for 100 */
 while (x)
 {
 BUZZER1 = 1;
 BUZZER2 = 0;

 delay_us (80*y);
 delay_us (80*y);

 BUZZER1 = 0;
 BUZZER2 = 1;

 delay_us (80*y);
 delay_us (80*y);

 x--; /* dec. loop counter */
 }

 y--; /* dec. loop for 3 tone */
 }

 BUZZER1 = 0;
 BUZZER2 = 0;
}

/***/
/* End Of Module */
/***/

8: Appendices

- 172 -

8.3.3 eeprom.h

#ifdef _I2C_EEPROM_

 #define CHECK_BYTE 0xaa // check byte for eeprom

 #define OK 0x00 // check for status
 #define FAIL 0x01 // check for status

 #define DATA_SENT_OK 0x01 // data sent ok
 #define BUS_ERROR 0x05 // i2c bus error
 #define EEPROM_READ 0x06 // eeprom read requested
 #define DATA_RECEIVED_OK 0x07 // eeprom data read ok
 #define TRANSMIT_DATA 0x0a // start to transmitt data ok

 #define ENS1_NOTSTA_STO_NOTSI_AA_CR0 0xd4 // i2c control

 #define I2C_TIMEOUT 0xffff // counter delay for i2c
timout error

 extern data unsigned char slave_address; // slave address
 extern data unsigned char i2c_transmit_len; // length of i2c message
 extern xdata unsigned char i2c_data_tx[0x0f]; // i2c data transmit
buffer
 extern xdata unsigned char i2c_data_rx[0x0f]; // i2c data receive buffer
 extern data unsigned char tx_ok; // i2c TX status flag
 extern data unsigned char buffer_full; // buffer data flag

 extern void delay_10ms (unsigned char); // delay time in 10ms increments
 extern void decode_rs232_data (void); // decode rs-232 data while waiting

 unsigned char i2c_eeprom_write (unsigned char, unsigned char, unsigned char);//
data to e2prom
 unsigned char i2c_eeprom_read (unsigned char, unsigned char); // data
from e2prom
 unsigned char i2c_eeprom_check (unsigned char, unsigned char, unsigned char);
 int i2c_eeprom_int_read (unsigned char, unsigned char);
 unsigned char i2c_eeprom_int_write (unsigned char, unsigned char, int);
 unsigned char i2c_eeprom_char_write (unsigned char, unsigned char, unsigned
char);
 unsigned char i2c_eeprom_count_write (unsigned char, unsigned char, unsigned
long);
 unsigned long i2c_eeprom_count_read (unsigned char, unsigned char);

#else

 extern unsigned char i2c_eeprom_write (unsigned char, unsigned char, unsigned
char);// data to e2prom
 extern unsigned char i2c_eeprom_read (unsigned char, unsigned char); //
data from e2prom
 extern unsigned char i2c_eeprom_check (unsigned char, unsigned char, unsigned
char);
 extern int i2c_eeprom_int_read (unsigned char, unsigned char);
 extern unsigned char i2c_eeprom_int_write (unsigned char, unsigned char, int);
 extern unsigned char i2c_eeprom_char_write (unsigned char, unsigned char,
unsigned char);
 extern unsigned char i2c_eeprom_count_write (unsigned char, unsigned char,
unsigned long);
 extern unsigned long i2c_eeprom_count_read (unsigned char, unsigned char);

#endif

8: Appendices

- 173 -

8.3.4 eeprom.c

#define _I2C_EEPROM_

#include <reg652.h> // sfrs for 80C652

#include "time.h" // delay routines header file
#include "eeprom.h" // eeprom routines header file

/***/
/* Name: i2c_eeprom_write */
/* Description: sets data for i2c eeprom, then sends */
/* Input: eeprom_addr, i2c address of eeprom */
/* eeprom_word_addr, word address of data to be saved */
/* eeprom_data, data for eeprom */
/* Return Values: unsigned char - 0 = storage OK */
/* unsigned char - >0 = corrupted storage */
/* Return Value: - */
/***/

unsigned char i2c_eeprom_write (eeprom_addr, eeprom_word_addr, eeprom_data)
unsigned char eeprom_addr;
unsigned char eeprom_word_addr;
unsigned char eeprom_data;
{
 xdata unsigned int i = 0; // i2c timeout counter

 slave_address = eeprom_addr; // set slave address to eeprom value

 i2c_transmit_len = 2; // set length of transmission string

 i2c_data_tx[0] = eeprom_word_addr; // set eeprom address to use
 i2c_data_tx[1] = eeprom_data; // set data to save in eeprom address
 i2c_data_tx[2] = 0; // end of string

 STA = 1; // set i2c transmition in motion

 tx_ok = TRANSMIT_DATA; // set transmission status variable

 while ((tx_ok != DATA_SENT_OK) && (i < I2C_TIMEOUT))
 {
 //if (buffer_full == 1) // check for rs232 data
 // decode_rs232_data(); // if so, decode it
 i++; // increment timeout counter
 }

 if (tx_ok != DATA_SENT_OK)
 {
 tx_ok = BUS_ERROR; // reinitilase i2c bus
 S1CON = ENS1_NOTSTA_STO_NOTSI_AA_CR0;
 SI = 0; // clear i2c interrupt flag
 return FAIL;
 }
 else
 {
 delay_10ms (1); // allow eeprom writing time, 7ms
 return OK;
 }
}

8: Appendices

- 174 -

/***/
/* Name: i2c_eeprom_read */
/* Description: reads data from i2c eeprom */
/* Input: eeprom_addr, i2c address of eeprom */
/* eeprom_word_addr, word address of data to be read */
/* Return Value: data byte from eeprom */
/***/

unsigned char i2c_eeprom_read (eeprom_addr, eeprom_word_addr)
unsigned char eeprom_addr;
unsigned char eeprom_word_addr;
{
 xdata unsigned int i = 0; // i2c timeout counter

 slave_address = eeprom_addr; // set slave address to eeprom value

 i2c_transmit_len = 1; // set length of transmission string

 i2c_data_tx[0] = eeprom_word_addr; // set eeprom address to use
 i2c_data_tx[1] = 0; // end of string

 STA = 1; // set i2c transmition in motion

 tx_ok = EEPROM_READ; // set transmission status variable

 while ((tx_ok != DATA_RECEIVED_OK) && (i < I2C_TIMEOUT))
 {
 //if (buffer_full == 1) // check for rs232 data
 // decode_rs232_data(); // if so, decode it
 i++; // increment timeout counter
 }

 if (tx_ok == DATA_RECEIVED_OK)
 return (i2c_data_rx[0]);
 else
 {
 tx_ok = BUS_ERROR; // reinitilase i2c bus
 S1CON = ENS1_NOTSTA_STO_NOTSI_AA_CR0;
 SI = 0; // clear i2c interrupt flag
 return (0); // return null data
 }
}

/***/
/* Function: i2c_eeprom_check */
/* Opertion: checks data in given address is correct */
/* Inputs: unsigned char - base address of eeprom */
/* unsigned char - start address for checking */
/* unsigned char - number of bytes to check */
/* Return Values: unsigned char - 0 = storage OK */
/* unsigned char - >0 = corrupted storage */
/***/

unsigned char i2c_eeprom_check (eeprom_addr, address_start, no_bytes)
unsigned char eeprom_addr;
unsigned char address_start;
unsigned char no_bytes;
{
 xdata unsigned char checksum = CHECK_BYTE; // start with check byte

 do
 {
 checksum ^= i2c_eeprom_read (eeprom_addr, address_start++);
 no_bytes--;
 } while (no_bytes > 0); // get all bytes required

 if (checksum != i2c_eeprom_read (eeprom_addr, address_start))
 return FAIL;
 else
 return OK;
}

8: Appendices

- 175 -

/***/
/* Name: i2c_eeprom_int_read */
/* Description: reads a two byte integer value from the eeprom */
/* Inputs: unsigned char - base address for i2c eeprom */
/* unsigned char - start address for reading */
/* Return Values: int - return value of integer read */
/***/

int i2c_eeprom_int_read (unsigned char eeprom_addr, unsigned char address)
{
 xdata int integer_read;

 integer_read = i2c_eeprom_read (eeprom_addr, address++); // read low
byte
 integer_read += i2c_eeprom_read (eeprom_addr, address) * 256; // read hi
byte

 return integer_read; // return read value
}

/***/
/* Name: i2c_eeprom_int_write */
/* Description: writes a two byte integer value to the eeprom, plus*/
/* check digit, check written value, and returns value*/
/* Inputs: unsigned char - base address for eeprom */
/* unsigned char - start address for writing */
/* int - data for writting */
/* Return Values: unsigned char - 0 = written ok */
/* unsigned char - !0 = not written ok */
/***/

unsigned char i2c_eeprom_int_write (eeprom_addr, address, int data_word)
unsigned char eeprom_addr;
unsigned char address;
{
 xdata unsigned char integer_write;
 xdata unsigned char checksum = CHECK_BYTE; // start with check byte

 integer_write = data_word % 256; // get hi byte
 checksum ^= integer_write; // calc. check byte
 i2c_eeprom_write (eeprom_addr, address++, integer_write); // write hi byte
 integer_write = data_word / 256; // get low byte
 checksum ^= integer_write; // calc. check byte
 i2c_eeprom_write (eeprom_addr, address++, integer_write); // write low byte
 i2c_eeprom_write (eeprom_addr, address, checksum); // write check sum

 address -= 2;
 if (i2c_eeprom_int_read (eeprom_addr, address) == data_word
 && i2c_eeprom_check (eeprom_addr, address, 2) == OK)
 return OK; // check data written is ok
 else
 return FAIL; // return non zero if not
}

8: Appendices

- 176 -

/***/
/* Name: i2c_eeprom_char_write */
/* Description: writes a byte to the eeprom, plus check digit, */
/* check written value, and returns value */
/* Inputs: unsigned char - base address of eeprom */
/* unsigned char - start address for reading */
/* unsigned char - data for writting */
/* Return Values: unsigned char - 0 = written ok */
/* unsigned char - !0 = not written ok */
/***/

unsigned char i2c_eeprom_char_write (eeprom_addr, address, data_byte)
unsigned char eeprom_addr;
unsigned char address;
unsigned char data_byte;
{
 unsigned char checksum = CHECK_BYTE; // start with check byte

 checksum ^= data_byte; // calc. check byte

 i2c_eeprom_write (eeprom_addr, address++, data_byte); // write byte
 i2c_eeprom_write (eeprom_addr, address, checksum); // write check sum

 address--;

 if ((i2c_eeprom_read (eeprom_addr, address) == data_byte)
 && (i2c_eeprom_check (eeprom_addr, address, 1) == OK))
 return OK; // check data written is OK
 else
 return FAIL; // return non zero if not
}

/***/
/* Name: i2c_eeprom_count_write */
/* Description: writes a three byte value to the eeprom, plus */
/* check digit, check written value, and returns value*/
/* Inputs: unsigned char - base address for eeprom */
/* unsigned char - start address for writing */
/* unsigned long - data for writing */
/* Return Values: unsigned char - 0 = written ok */
/* unsigned char - !0 = not written ok */
/***/

unsigned char i2c_eeprom_count_write (eeprom_addr, address, data_word)
unsigned char eeprom_addr;
unsigned char address;
unsigned long data_word;
{
 unsigned long old_data;
 unsigned char count_write;
 unsigned char checksum = CHECK_BYTE; // start with check byte

 data_word &= 0x00ffffffUL; // ignore last byte of long word
 old_data = data_word; // save data for later calc.
 count_write = data_word % 65536UL; // find lo byte value
 checksum ^= count_write; // calc. rolling checkbyte
 i2c_eeprom_write (eeprom_addr, address++, count_write); // save lo byte
 data_word /= 256UL; // knock off lo byte
 count_write = data_word % 256UL; // find mid byte value
 checksum ^= count_write; // calc. rolling checkbyte
 i2c_eeprom_write (eeprom_addr, address++, count_write); // save mid byte
value
 count_write = data_word / 256UL; // find hi byte
 checksum ^= count_write; // calc. rolling checkbyte
 i2c_eeprom_write (eeprom_addr, address++, count_write); // save hi byte
 i2c_eeprom_write (eeprom_addr, address, checksum); // save checkbyte

 address -= 3;
 if (i2c_eeprom_count_read (eeprom_addr, address) == old_data
 && i2c_eeprom_check (eeprom_addr, address, 3) == OK)
 return OK; // check data written is OK
 else
 return FAIL; // if not return zero
}

8: Appendices

- 177 -

/***/
/* Name: i2c_eeprom_count_read */
/* Description: reads a three byte value from the eeprom */
/* Inputs: unsigned char - start address for reading */
/* Return Values: unsigned long - return value of read */
/***/

unsigned long i2c_eeprom_count_read (eeprom_addr, address)
unsigned char eeprom_addr;
unsigned char address;
{
 unsigned long count_read;

 count_read = (unsigned long) i2c_eeprom_read (eeprom_addr, address++);
 count_read += ((unsigned long) i2c_eeprom_read (eeprom_addr, address++) *
256UL);
 count_read += ((unsigned long) i2c_eeprom_read (eeprom_addr, address) *
65536UL);

 return count_read;
}

/***/
/* End Of Module */
/***/

8: Appendices

- 178 -

8.3.5 galvos. h

#ifdef _GALVOS_

 #ifndef PIO2
 #define PIO2 XBYTE[0x0004] // base address of PIO 2
 #endif

 sbit A0_PIO2 = 0x91; // address 0 pin for PIO 2
 sbit A1_PIO2 = 0x92; // address 1 pin for PIO 2

 void set_left_dtoa (unsigned char); // set left D/A value for left galvo
 void set_right_dtoa (unsigned char); // set right D/A value for right galvo
 void set_dtoas (unsigned char); // set both D/A values for both galvos

#else

 extern void set_left_dtoa (unsigned char); // set left D/A value for left
galvo
 extern void set_right_dtoa (unsigned char); // set right D/A value for right
galvo
 extern void set_dtoas (unsigned char); // set both D/A values for both
galvos

#endif

8: Appendices

- 179 -

8.3.6 galvos.c

#define _GALVOS_

#include <absacc.h>

#include "galvos.h" // galvo control functions

/***/
/* Name: set_left_dtoa */
/* Description: send set value to d to a converter 1 */
/* Input: unsigned char, value */
/* Return Value: - */
/***/

void set_left_dtoa (unsigned char value)
{
 A0_PIO2 = 0;
 A1_PIO2 = 0; // address lines for left dtoa data

 PIO2 = value; // set dtoa value

 A1_PIO2 = 1; // address line for control port
 PIO2 |= 0x10; // send enable line high
 PIO2 &= 0xef; // reset enable line low
}

/***/
/* Name: set_right_dtoa */
/* Description: send set value to d to a converter 2 */
/* Input: unsigned char, value */
/* Return Value: - */
/***/

void set_right_dtoa (unsigned char value)
{
 A1_PIO2 = 0;
 A0_PIO2 = 1; // address line for data port

 PIO2 = value; // set dtoa value

 A1_PIO2 = 1;
 A0_PIO2 = 0; // address line for control port
 PIO2 |= 0x20; // send enable line high
 PIO2 &= 0xdf; // reset enable line low
}

/***/
/* Name: set_dtoas */
/* Description: send set value to d to a converters 1 and 2 */
/* Input: unsigned char, value */
/* Return Value: - */
/***/

void set_dtoas (unsigned char value)
{
 set_left_dtoa (value); // set value of left d/a - 1
 set_right_dtoa (value); // set value of right d/a - 2
}

/***/
/* End Of Module */
/***/

8: Appendices

- 180 -

8.3.7 i2c.h

#ifdef _I2C_

 #define ENS1_NOTSTA_STO_NOTSI_AA_CR0 0xd4 // i2c control
 #define ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0 0xc4 // i2c control
 #define ENS1_NOTSTA_NOTSTO_NOTSI_NOTAA_CR0 0xc0 // i2c control
 #define ENS1_STA_NOTSTO_NOTSI_AA_CR0 0xe4 // i2c control

 #define DATA_SENT_OK 0x01 // data sent ok
 #define NACK_ADDRESS 0x02 // nack received after address tx
 #define NACK_POST_ADDRESS 0x03 // nack during transmission
 #define LOST_ARBITRATION 0x04 // lost arbitration on transmit
 #define BUS_ERROR 0x05 // i2c bus error
 #define EEPROM_READ 0x06 // eeprom read requested
 #define DATA_RECEIVED_OK 0x07 // eeprom data read ok
 #define IO_READ 0x08 // read i2c i/o
 #define TRANSMIT_DATA 0x0a // start to transmitt data ok

 #define GENERAL_CALL 0x00 // i2c general call address
 #define READ 0x01 // read bit in slave address
 #define WRITE 0x00 // write bit in slave address

 #define OK 0x00 // check for status
 #define FAIL 0x01 // check for status

 #define ETX 0x03 // end of text

 #define I2C_TIMEOUT 0xffff // counter timeout delay for i2c routines

 extern void decode_rs232_data (void); // decode rs-232 data while
waiting
 extern data unsigned char buffer_full; // buffer data flag

 xdata unsigned char i2c_data_tx[0x0f]; // i2c data transmit buffer
 xdata unsigned char i2c_data_rx[0x0f]; // i2c data receive buffer
 data unsigned char slave_address; // slave address
 data unsigned char tx_ok = 0; // i2c TX status flag
 data unsigned char i2c_transmit_len = 0; // length of i2c message
 data unsigned char i2c_rx_data_count = 0; // i2c data count for RX
 data unsigned char i2c_tx_data_count = 0; // i2c data count for TX

 void i2c_int (void); // i2c interrupt routine
 unsigned char i2c_dac (unsigned char, unsigned char, unsigned char); //
data to dacs
 unsigned char i2c_e2pot (unsigned char, unsigned char, unsigned char); //
data to e2pots
 unsigned char i2c_io_read (unsigned char); // data from i2c io

#else

 extern void i2c_int (void); // i2c interrupt routine
 extern unsigned char i2c_dac (unsigned char, unsigned char, unsigned char); //
data to dacs
 extern unsigned char i2c_e2pot (unsigned char, unsigned char, unsigned char);//
data to e2pots
 extern unsigned char i2c_io_read (unsigned char);// data from i2c io

#endif

8: Appendices

- 181 -

8.3.8 i2c.c

#define _I2C_

#include <reg652.h> // special function registers of 80C652

#include "i2c.h" // i2c routines header file

/**/
/* Name: i2c_int */
/* Description: i2c serial interrupt routine */
/* Input: - */
/* Return Value: - */
/**/

void i2c_int(void) interrupt 5
{
 switch (S1STA)
 {

/***/
/* GENERALMODE */
/***/
 /**/
 /* State: 00h - Bus error */
 /* Action: enter not addressed slave mode & relesae bus */
 /* STO reset. */
 /**/
 case 0x00: tx_ok = BUS_ERROR;
 S1CON = ENS1_NOTSTA_STO_NOTSI_AA_CR0;
 break;

/***/
/* MASTER TRANSMITTER MODE */
/***/
 /**/
 /* State: 08h - Start condition has been transmitted */
 /* Action: tx slave address, receive ack bit */
 /**/
 case 0x08: S1DAT = slave_address;
 i2c_tx_data_count = 0;
 S1CON = ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0;
 break;

 /**/
 /* State: 10h - Repeated start has been transmitted */
 /* Action: tx slave address, receive ack bit */
 /**/
 case 0x10: S1DAT = slave_address;
 i2c_tx_data_count = 0;
 S1CON = ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0;
 break;

 /**/
 /* State: 18h - previous state 8 or 10, slave address */
 /* was transmitted, ack bit received */
 /* Action: send first data byte, ack received */
 /**/
 case 0x18: if (tx_ok == TRANSMIT_DATA ||
 tx_ok == LOST_ARBITRATION ||
 tx_ok == EEPROM_READ)
 S1DAT = i2c_data_tx[i2c_tx_data_count++];
 S1CON = ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0;
 break;

 /**/
 /* State: 20h - previous state 8 or 10, slave address */
 /* was transmitted, nack received */
 /* Action: Transmit STOP condition */
 /**/
 case 0x20: tx_ok = NACK_ADDRESS;
 S1CON = ENS1_NOTSTA_STO_NOTSI_AA_CR0;

8: Appendices

- 182 -

 break;

 /**/
 /* State: 28h - S1DAT transmitted, ack received */
 /* Action: Transmit next data, if data is last byte */
 /* transmit STOP condition */
 /**/
 case 0x28: if (tx_ok == TRANSMIT_DATA || tx_ok == LOST_ARBITRATION)
 {
 if (i2c_tx_data_count < i2c_transmit_len)
 {
 S1DAT = i2c_data_tx[i2c_tx_data_count++];
 S1CON = ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0;
 }
 else
 {
 tx_ok = DATA_SENT_OK;
 S1CON = ENS1_NOTSTA_STO_NOTSI_AA_CR0;
 }
 }

 if (tx_ok == EEPROM_READ) /* now read data form eeprom */
 {
 slave_address += READ;
 S1CON = ENS1_STA_NOTSTO_NOTSI_AA_CR0;
 }

 break;

 /**/
 /* State: 30h - S1DAT transmitted, nack received */
 /* Action: transmit STOP condition */
 /**/
 case 0x30: tx_ok = NACK_POST_ADDRESS;
 S1CON = ENS1_NOTSTA_STO_NOTSI_AA_CR0;
 break;

 /**/
 /* State: 38h - lost arbitration in slave address wri. */
 /* or data */
 /* Action: release bus, enter not addressed slave mode */
 /* START transmitted when bus free */
 /**/
 case 0x38: tx_ok = LOST_ARBITRATION;
 S1CON = ENS1_STA_NOTSTO_NOTSI_AA_CR0;
 break;

/***/
/* MASTER RECEIVER MODE */
/***/
 /**/
 /* State: 40h - previous state 8 or 10, slave address */
 /* and read transmitted, ack received */
 /* Action: data will be received and ack returned */
 /**/
 case 0x40: i2c_rx_data_count = 0;
 i2c_data_rx[0] = 0;
 S1CON = ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0;
 break;

 /**/
 /* State: 48h - slave address and read transmitted, */
 /* nack received */
 /* Action: STOP condition generated */
 /**/
 case 0x48: S1CON = ENS1_NOTSTA_STO_NOTSI_AA_CR0;
 break;

 /**/
 /* State: 50h - data received, ack returned */
 /* Action: read S1DAT. If last data send nack else */
 /* send ack */
 /**/
 case 0x50: i2c_data_rx[i2c_rx_data_count++] = S1DAT;
 if (i2c_rx_data_count < 1)

8: Appendices

- 183 -

 S1CON = ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0;
 else
 {
 i2c_data_rx[i2c_rx_data_count] = 0;
 S1CON = ENS1_NOTSTA_NOTSTO_NOTSI_NOTAA_CR0;
 }
 break;

 /**/
 /* State: 58h - data received, nack returned */
 /* Action: read S1DAT and generate STOP condition */
 /**/
 case 0x58: i2c_data_rx[i2c_rx_data_count++] = S1DAT;
 i2c_data_rx[i2c_rx_data_count] = 0;
 tx_ok = DATA_RECEIVED_OK;
 S1CON = ENS1_NOTSTA_STO_NOTSI_AA_CR0;
 break;

/***/
/* SLAVE RECEIVER MODE */
/***/
 /**/
 /* State: 60h - own address received and write, send */
 /* ack */
 /* Action: data will be received, ack returned */
 /**/
 case 0x60: i2c_rx_data_count = 0;
 i2c_data_rx[0] = 0;
 S1CON = ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0;
 break;

 /**/
 /* State: 68h - lost arbitration in address and r/w as */
 /* master, own address and write received, send */
 /* ack */
 /* Action: data will be received and ack returned. STA */
 /* is set to restart master mode after the bus */
 /* is free again */
 /**/
 case 0x68: i2c_rx_data_count = 0;
 i2c_data_rx[0] = 0;
 S1CON = ENS1_STA_NOTSTO_NOTSI_AA_CR0;
 break;

 /**/
 /* State: 70h - general call received, ack returned */
 /* Action: data will be received, ack returned */
 /**/
 case 0x70: i2c_rx_data_count = 0;
 i2c_data_rx[0] = 0;
 S1CON = ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0;
 break;

 /**/
 /* State: 78h - lost arbitration in slave and r/w as */
 /* master, general call received, ack returned */
 /* Action: data will be received and ack returned. STA */
 /* is set to restart master mode after the bus */
 /* is free again */
 /**/
 case 0x78: tx_ok = LOST_ARBITRATION;
 i2c_rx_data_count = 0;
 i2c_data_rx[0] = 0;
 S1CON = ENS1_STA_NOTSTO_NOTSI_AA_CR0;
 break;

 /**/
 /* State: 80h - previously slave addressed ok, data */
 /* received, ack returned */
 /* Action: read data. if last data, excess will be */
 /* received and nack returned, else next data */
 /* received and ack returned */
 /**/
 case 0x80: i2c_data_rx[i2c_rx_data_count++] = S1DAT;
 if (i2c_data_rx[i2c_rx_data_count-2] != ETX)
 S1CON = ENS1_NOTSTA_NOTSTO_NOTSI_NOTAA_CR0;

8: Appendices

- 184 -

 else
 {
 i2c_data_rx[i2c_rx_data_count] = 0;
 S1CON = ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0;
 }
 break;

 /**/
 /* State: 88h - previously slave addressed ok, data */
 /* received, nack returned */
 /* Action: dont save data, enter not addressed slave */
 /* mode. Recognition of own address. General */
 /* call recognised if applicable. */
 /**/
 case 0x88: S1CON = ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0;
 break;

 /**/
 /* State: 90h - previously addressed with general call */
 /* data received, ack returned */
 /* Action: read data. After general call, only one byte */
 /* will be received with ack, 2nd byte will be */
 /* nack. data will be received and nack returned*/
 /**/
 case 0x90: i2c_data_rx[i2c_rx_data_count++] = S1DAT;
 S1CON = ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0;
 break;

 /**/
 /* State: 98h - previously addressed with general call */
 /* data received nack returned */
 /* Action: don't save data, enter not addressed slave */
 /* mode. Recognition of own address & general */
 /* call if applicable */
 /**/
 case 0x98: S1CON = ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0;
 break;

 /**/
 /* State: a0h - STOP or repeated START received while */
 /* still addressed as slave */
 /* Action: don't save data, enter not addressed slave */
 /* mode. recognise own address and general call */
 /* if applicable */
 /**/
 case 0xa0: i2c_data_rx[i2c_rx_data_count] = 0;
 // rxdata();
 if (tx_ok == TRANSMIT_DATA)
 S1CON = ENS1_STA_NOTSTO_NOTSI_AA_CR0;
 else
 S1CON = ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0;
 break;

/***/
/* SLAVE TRANSMITTER MODE */
/***/
 /**/
 /* State: a8h - slave address received and read, ack */
 /* sent */
 /* Action: data will be transmitted, ack received */
 /**/
 case 0xa8: S1DAT = i2c_data_tx[i2c_tx_data_count++];
 S1CON = ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0;
 break;

 /**/
 /* State: b0h - lost arbitration in slave address and */
 /* r/w as master. own address received and read */
 /* ack returned */
 /* Action: data will be transmitted. ack received. STA */
 /* SET to restart master mode after the bus is */
 /* free again */
 /**/
 case 0xb0: S1DAT = i2c_data_tx[i2c_tx_data_count++];
 S1CON = ENS1_STA_NOTSTO_NOTSI_AA_CR0;
 break;

8: Appendices

- 185 -

 /**/
 /* State: b8h - data transmitted, ack received */
 /* Action: data will be transmitted, ack received */
 /**/
 case 0xb8: S1DAT = i2c_data_tx[i2c_tx_data_count++];
 S1CON = ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0;
 break;

 /**/
 /* State: c0h - data transmitted, nack received */
 /* Action: enter not addressed slave mode */
 /**/
 case 0xc0: S1CON = ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0;
 break;

 /**/
 /* State: c8h - last data has been transmitted (AA=0) */
 /* ack received */
 /* Action: enter not addressed slave mode */
 /**/
 case 0xc8: S1CON = ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0;
 break;

 default: SI = 0; // clear i2c interrupt flag
 }
}

/***/
/* Name: i2c_dac */
/* Description: sets data for i2c dac, then sends */
/* Input: dac_addr, i2c address of dac */
/* dac_instr, instruction byte for dac sub address */
/* dac_data, data for dac output */
/* Return Value: - */
/***/

unsigned char i2c_dac (dac_addr, dac_instr, dac_data)
unsigned char dac_addr;
unsigned char dac_instr;
unsigned char dac_data;
{
 xdata unsigned int i = 0; // i2c timeout counter

 slave_address = dac_addr; // set slave address to dac value
 i2c_transmit_len = 2; // set length of transmission string

 i2c_data_tx[0] = dac_instr; // set dac number to use
 i2c_data_tx[1] = dac_data; // set data for chosen dac number
 i2c_data_tx[2] = 0; // end of string

 STA = 1; // set i2c transmition in motion
 tx_ok = TRANSMIT_DATA; // set transmission status variable

 while ((tx_ok != DATA_SENT_OK) && (i < I2C_TIMEOUT))
 {
 //if (buffer_full == 1) // check for rs232 data
 // decode_rs232_data(); // if so, decode it
 i++; // increment timeout counter
 }

 if (tx_ok != DATA_SENT_OK)
 {
 tx_ok = BUS_ERROR; // reinitilase i2c bus
 S1CON = ENS1_NOTSTA_STO_NOTSI_AA_CR0;
 SI = 0; // clear i2c interrupt flag
 return FAIL;
 }
 else
 return OK;
}

8: Appendices

- 186 -

/***/
/* Name: i2c_e2pot */
/* Description: sets data for i2c e2pot, then sends */
/* Input: e2pot_addr, i2c address of e2pot */
/* e2pot_instr, instruction byte for e2pot */
/* e2pot_data, data for e2pot setting */
/* Return Value: - */
/***/

unsigned char i2c_e2pot (e2pot_addr, e2pot_instr, e2pot_data)
unsigned char e2pot_addr;
unsigned char e2pot_instr;
unsigned char e2pot_data;
{
 xdata unsigned int i = 0; // i2c timeout counter

 slave_address = e2pot_addr; // set slave address to e2pot value
 e2pot_instr += 0xa0; // set command to write volatile wiper
 e2pot_data = 63 - e2pot_data; // 63 is maximum val, this inverts wiper
response
 i2c_transmit_len = 2; // set length of transmission string

 i2c_data_tx[0] = e2pot_instr; // set instruction to use
 i2c_data_tx[1] = e2pot_data; // set data for chosen instruction
 i2c_data_tx[2] = 0; // end of string

 STA = 1; // set i2c transmition in motion
 tx_ok = TRANSMIT_DATA; // set transmission status variable

 while ((tx_ok != DATA_SENT_OK) && (i < I2C_TIMEOUT))
 {
 //if (buffer_full == 1) // check for rs232 data
 // decode_rs232_data(); // if so, decode it
 i++; // increment timeout counter
 }

 if (tx_ok != DATA_SENT_OK)
 {
 tx_ok = BUS_ERROR; // reinitilase i2c bus
 S1CON = ENS1_NOTSTA_STO_NOTSI_AA_CR0;
 SI = 0; // clear i2c interrupt flag
 return FAIL;
 }
 else
 return OK;

 //e2pot_instr += 0x40; // set to save WCR value in NVR
 //slave_address = e2pot_addr; // reset slave address to e2pot value
 //i2c_transmit_len = 2; // reset length of transmission string
 //i2c_data_tx[0] = e2pot_instr; // reset instruction to use
 //i2c_data_tx[1] = e2pot_data; // set data for chosen instruction
 //i2c_data_tx[2] = 0; // end of string
 //STA = 1; // set i2c transmition in motion
 //tx_ok = TRANSMIT_DATA; // set transmission status variable
 //while(tx_ok != DATA_SENT_OK); // wait for data sent

 //delay_10ms (1);
}

8: Appendices

- 187 -

/***/
/* Name: i2c_io_read */
/* Description: reads data from i2c io */
/* Input: io_addr, i2c address of io */
/* Return Value: data byte from io */
/***/

unsigned char i2c_io_read (unsigned char io_addr)
{
 xdata unsigned int i = 0; // i2c timeout counter

 slave_address = io_addr; // set slave address to io value
 slave_address += READ; // set to read i2c io

 i2c_transmit_len = 0; // set length of transmission string
 i2c_data_tx[0] = 0; // end of string
 STA = 1; // set i2c transmition in motion

 tx_ok = IO_READ; // set transmission status variable

 while ((tx_ok != DATA_RECEIVED_OK) && (i < I2C_TIMEOUT))
 {
 //if (buffer_full == 1) // check for rs232 data
 // decode_rs232_data(); // if so, decode it
 i++; // increment timeout counter
 }

 if (tx_ok == DATA_RECEIVED_OK)
 return (i2c_data_rx[0]);
 else
 { // maybe best to retry here!!!!!
 tx_ok = BUS_ERROR; // reinitilase i2c bus
 S1CON = ENS1_NOTSTA_STO_NOTSI_AA_CR0;
 SI = 0; // clear i2c interrupt flag
 return (0); // return null data
 }
}

/***/
/* End Of Module */
/***/

8: Appendices

- 188 -

8.3.9 lcd_text.h

#ifdef _LCD_TEXT_

 #ifndef PORT_A
 #define PORT_A XBYTE[0x0000] // port b address of 8255
 #endif

 #ifndef PORT_C
 #define PORT_C XBYTE[0x0002] // port c address of 8255
 #endif

 extern void delay_10ms (unsigned char); // delay time in 10ms increments
 extern void delay_us (unsigned char); // delay time in us increments

 void initialise_lcd (void);
 void send_lcd_control_byte (unsigned char);
 void send_lcd_data_byte (char);
 void print_lcd (char*, char, char);
 void clear_lcd (void);

#else

 extern void initialise_lcd (void);
 extern void send_lcd_control_byte (unsigned char);
 extern void send_lcd_data_byte (char);
 extern void print_lcd (char*, char, char);
 extern void clear_lcd (void);

 #define CURRENT 0 // current position of LCD cursor
 #define LINE_1 1 // line 1 of LCD
 #define LINE_2 2 // line 2 of LCD
 #define LINE_3 3 // line 3 of LCD
 #define LINE_4 4 // line 4 of LCD

#endif

8: Appendices

- 189 -

8.3.10 lcd_text.c

#define _LCD_TEXT_

#include <absacc.h>
#include <string.h> // string functions
#include "lcd_text.h" // lcd text routines header file

/***/
/* Name: initialise_lcd */
/* Description: Initialises lcd */
/* Input: - */
/* Return Value: - */
/***/

void initialise_lcd (void)
{
 send_lcd_control_byte (48); // initialise lcd
 send_lcd_control_byte (48); // initialise lcd
 send_lcd_control_byte (48); // initialise lcd
 send_lcd_control_byte (60); // set function mode
 send_lcd_control_byte (8); // display off
 send_lcd_control_byte (1); // clear display
 send_lcd_control_byte (6); // entry mode
 send_lcd_control_byte (12); // display on
 send_lcd_control_byte (1); // clear display
 send_lcd_control_byte (2); // return home
}

/***/
/* Name: send_lcd_control_byte */
/* Description: sends a single control byte to the lcd */
/* Input: value to be sent to lcd as control byte - */
/* control_value (unsigned char) */
/* Return Value: - */
/***/

void send_lcd_control_byte (unsigned char control_value)
{
 PORT_C &= 0x1f; // clear RS, R/W and E

 PORT_A = control_value; // send value to port A

 PORT_C |= 0x20; // set E high
 PORT_C &= 0xdf; // set E low

 if (control_value < 0x04)
 delay_10ms (1);
 else
 delay_us (110); // settling delay, 110us
}

/***/
/* Name: send_lcd_data_byte */
/* Description: sends a single data byte to the lcd */
/* Input: value to be sent to lcd as data byte - data_value */
/* Return Value: - */
/***/

void send_lcd_data_byte (char data_value)
{
 PORT_C &= 0x1f; // clear RS, R/W and E
 PORT_C |= 0x80; // set RS high
 PORT_A = data_value; // send value to port A

 PORT_C |= 0x20; // set E high
 PORT_C &= 0xdf; // set E low

 delay_us (110); // settling delay, 110us
}

8: Appendices

- 190 -

/***/
/* Name: print_lcd */
/* Description: print specified string on specified line of display*/
/* Input: text string - print_text, line number - line_no */
/* Return Value: - */
/***/

void print_lcd (char* print_text, char line_no, char char_no)
{
 unsigned char offset ;
 unsigned char char_count ;
 unsigned char i ;

 switch (line_no) // set character offset position on display
 {
 case 1: offset = 128 ;
 break ;
 case 2: offset = 192 ;
 break ;
 case 3: offset = 148 ;
 break ;
 case 4: offset = 212 ;
 break ;
 default: offset = 0 ;
 break ;
 }

 if (offset != 0)
 {
 offset += char_no ;
 send_lcd_control_byte (offset);
 }

 char_count = strlen (print_text);

 for (i = 0 ; i < char_count ; i++)
 send_lcd_data_byte (print_text[i]);
}

/***/
/* Name: clear_lcd */
/* Description: clears the lcd screen */
/* Input: - */
/* Return Value: - */
/***/

void clear_lcd (void)
{
 send_lcd_control_byte (1);
}

/***/
/* End Of Module */
/***/

8: Appendices

- 191 -

8.3.11 rs232.h

#ifdef _RS232_

 #define SOH
 0x01
 // start of header - (transmission)
 #define ETX
 0x03 // end of text
 #define EOT
 0x04
 // end of transmission
 #define SUB
 0x1b
 // substitute - transparancey byte

 extern data unsigned char buffer_full; // buffer data flag
 extern data unsigned char in_buff_len; // in buffer length
 extern xdata unsigned char rs232_in_buffer[]; // rs232 input buffer

 xdata unsigned char rs232_out_buffer[0x1f]; // rs232 output buffer
 data unsigned char serial_int_count = 0; // serial int. routine RX
 data unsigned char serial_out_count = 0; // serial int. routine TX

 void serial_int (void); // serial port interrupt
 void send_rs232_data (unsigned char*, unsigned char); // send data string to
rs232

#else

 extern void serial_int (void); // serial port
interrupt
 extern void send_rs232_data (unsigned char*, unsigned char);// send data string
to rs232

#endif

8: Appendices

- 192 -

8.3.12 rs232.c

#define _RS232_

#include <reg652.h> // special function registers for 80C652

#include "rs232.h" // serial communications functions

/**/
/* Name: serial_int */
/* Description: serial interrupt routine */
/* Input: - */
/* Return Value: - */
/**/

void serial_int (void) interrupt 4
{
 if (RI == 1) // if data received flag is set
 {
 if (buffer_full == 1) // if full buffer
 {
 buffer_full = 0; // reset to empty buffer flag
 rs232_in_buffer[0] = 0; // clear buffer
 serial_int_count = 0; // clear in byte count
 in_buff_len = 0; // clear in buffer length to 0
 }

 if (SBUF != EOT) // if input buffer is not end of
transmission
 {
 in_buff_len++; // count next byte
 rs232_in_buffer[serial_int_count++] = SBUF; // save next byte
 rs232_in_buffer[serial_int_count] = 0; // re-terminate end of
string
 }

 if (SBUF == EOT) // if input buffer has reached end of
transmission
 {
 in_buff_len++; // count next byte
 rs232_in_buffer[serial_int_count++] = SBUF; // save next byte
 rs232_in_buffer[serial_int_count] = 0; // re-terminate end of
string
 serial_int_count = 0; // reset in counter
 buffer_full = 1; // set flag to tell in buffer is full
 }

 RI = 0; // reset received flag
 }

 if (TI == 1) // if data sent flag is set
 {
 if (serial_out_count == 0)
 {
 if (rs232_out_buffer[0] == SOH)
 {
 SBUF = rs232_out_buffer[serial_out_count++];
 }
 }
 else
 {
 SBUF = rs232_out_buffer[serial_out_count++];
 if (rs232_out_buffer[serial_out_count-1] == EOT)
 {
 rs232_out_buffer[0] = 0;
 serial_out_count = 0;
 }
 }

 TI = 0; // reset sent flag
 }
}

8: Appendices

- 193 -

/**/
/* Name: send_rs232_data */
/* Description: send data string to rs232 port under interrupts */
/* Input: char data_string - data string to be sent */
/* unsigned char data_length - no. of bytes of data */
/* Return Value: - */
/**/

void send_rs232_data (data_string, data_length)
unsigned char data_string[30];
unsigned char data_length;
{
 unsigned int i;
 unsigned char a;
 unsigned char shift;

 // ensure last data has already been sent first
 while ((serial_out_count != 0) && (i < 0xffff))
 i++; // increment timeout counter

 if (serial_out_count != 0) // waited too long, return
 return;

 rs232_out_buffer[0] = SOH; // 1st byte to send - start of header

 for (a = 0, shift = 1; a < data_length; a++)
 {
 if (data_string[a] == EOT || // substitution byte if EOT found
 data_string[a] == SUB || // substitution byte if SUB found
 data_string[a] == 0) // substitution byte if NUL found
 {
 rs232_out_buffer[a+shift] = SUB;
 rs232_out_buffer[a+shift+1] = data_string[a] ^ 0x20;
 shift++;
 }
 else
 rs232_out_buffer[a+shift] = data_string[a];
 }

 rs232_out_buffer[a+shift] = EOT; // send end of transmission byte
 rs232_out_buffer[a+shift+1] = 0; // terminate string

 TI = 1; // initiate interrupt sending
}

/***/
/* End Of Module */
/***/

8: Appendices

- 194 -

8.3.13 time.h

#ifdef _TIME_

 void delay_10ms (unsigned char); // delay time in 10ms increments
 void delay_us (unsigned char); // delay time in us increments

 //extern void decode_rs232_data (void); // decode received data
 //extern data unsigned char buffer_full; // ready to decode data flag

#else

 extern void delay_10ms (unsigned char); // delay time in 10ms increments
 extern void delay_us (unsigned char); // delay time in us increments

#endif

8: Appendices

- 195 -

8.3.14 time.c

#define _TIME_

#include <reg652.h> // special function registers for the 80C652

#include "time.h" // time routines header file

/***/
/* Name: delay_10ms */
/* Description: delays for number of 10ms passed, upto 255 maximum */
/* Calls: _ */
/* Input: number of 10ms to delay by - delay_10ms_value */
/* Return Value: - */
/***/

void delay_10ms (unsigned char delay_10ms_value)
{
 while (delay_10ms_value)
 {
 TH0 = 0xd8;
 TL0 = 0xf0;
 TR0 = 1;

 while (!TF0)
 {
 //if (buffer_full == 1) // check for rs232 data
 // decode_rs232_data (); // if so, decode it
 }

 TR0 = 0;
 TF0 = 0;

 delay_10ms_value--;
 }
}

/***/
/* Name: delay_us */
/* Description: delays for number of us passed (upto 255 maximum) */
/* Calls: _ */
/* Input: number of us to delay by - delay_us_value */
/* Return Value: - */
/***/

void delay_us (unsigned char delay_us_value)
{
 TH0 = 0xff;
 TL0 = (0xff - delay_us_value);
 TR0 = 1;

 while (!TF0)
 ;

 TR0 = 0;
 TF0 = 0;
}

/***/
/* End Of Module */
/***/

8: Appendices

- 196 -

8.3.15 egg1.c

/***/
/* EGG1.C: ADAS development program using the C-51 COMPILER */
/***/
/* */
/* Project: ADAS Laser Egg Cleaning Machine */
/* Author: Richard M. Farrar Creation Date: 19/07/96 */
/* Filename: egg1.c Language: C */
/* */
/* Compiler: Keil C-51 Assembler: */
/* Version: 5.02c Version: */
/* */
/***/
/* Modification History */
/***/
/* */
/* Version: Date: */
/* */
/* Modification: */
/* */
/***/

/***/
/* Header Files To Be Included:- */
/***/

#define _MAIN_ // define module for includes

#include <reg652.h> // sfrs for 80C652
#include <ctype.h> // character functions
#include <string.h> // string functions
#include <absacc.h> // macro definitions

#include "lcd_text.h" // lcd print functions
#include "time.h" // time delay functions
#include "eeprom.h" // i2c eeprom functions
#include "i2c.h" // i2c functions
#include "galvos.h" // galvo control functions
#include "rs232.h" // serial communications functions

//#define DEV // conditional compilation for dev. rig

/***/
/* Definitions:- */
/***/

#ifndef PORT_A
 #define PORT_A XBYTE[0x0000] // port a address of 8255
#endif

#ifndef PORT_B
 #define PORT_B XBYTE[0x0001] // port b address of 8255
#endif

#ifndef PORT_C
 #define PORT_C XBYTE[0x0002] // port c address of 8255
#endif

#ifndef PORT_CONTROL
 #define PORT_CONTROL XBYTE[0x0003] // control address of 8255
#endif

#ifndef PIO2
 #define PIO2 XBYTE[0x0004] // base address of PIO 2
#endif

#define GREEN_LED XBYTE[0x00f8] // green led address
#define RED_LED XBYTE[0x00f0] // red led address

#define BASE_10 10 // base radix for itoa conversion

8: Appendices

- 197 -

#define EGGS_PER_ROW 11 // number of eggs per row
#define ROWS_PER_TRAY 12 // 12 rows per tray

#define ROW_LENGTH 1200 // row length in pulses

#define OFF 0x00 // define off state to be zero
#define ON 0x01 // switches coloured led on
#define RETURN_ON 0x02 // return stroke on
#define RETURN_OFF 0x03 // retrun stroke off

#define OK 0x00 // check for status
#define FAIL 0x01 // check for status

#define COMBINED 0x01 // two laser sources combined
#define SEPARATED 0X00 // two laser sources separated

#define STATIC_PROFILE 0x00 // no scan profile
#define LINEAR_PROFILE 0x01 // linear scan profile
#define COMPENSATED_PROFILE 0x02 // compensated profile

#define MANUAL_MODE 0x00 // manual mode
#define AUTOMATIC_MODE 0x01 // automatic mode

#define EGG_CLEANED 0xfe // galvo has been triggered
#define EGG_WAITING 0xff // waiting to be triggered

#define ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0 0xc4 // i2c control

#define SOH 0x01 // start of header - (transmission)
#define ETX 0x03 // end of text
#define EOT 0x04 // end of transmission
#define SUB 0x1b // substitute - transparancey byte

#define LEFT_SCANNER 0x40 // i2c address of scanner dtoa 1
#define RIGHT_SCANNER 0x42 // i2c address of scanner dtoa 2
#define TOP_SCANNER 0x44 // i2c address of scanner dtoa 3
#define SCANNER_AMPLITUDE 0x00 // sub address of DAC0
#define SCANNER_ALARM 0x01 // sub address of DAC1
#define POS_THRESHOLD 0x02 // sub address of DAC2
#define NEG_THRESHOLD 0x03 // sub address of DAC3

#define DIGITAL_POT1 0x50 // i2c address of digital pot 1
#define LASER_HIGH_POWER 0x00 // laser high power address
#define LASER_LOW_POWER1 0x04 // laser low power 1 address
#define LASER_CLOCK_FREQ 0x08 // laser power clock frequency addr.

#define DIGITAL_POT2 0x52 // i2c address of digital pot 2
#define LASER_LOW_POWER2 0x00 // laser low power 2 address
#define LASER_TICKLE_POWER 0x04 // laser tickle power address
#define LASER_TEST_POWER 0x08 // laser test power address

#define EEPROM 0xa0 // i2c base address of eeprom
#define I2C_PORT1 0x4e // i2c base address of 8-bit I/O_1
#define I2C_PORT2 0x4c // i2c base address of 8-bit I/O_2

#define set_test_fire1() PORT_C |= 0x10 // closed - Relay 1
#define clear_test_fire1() PORT_C &= 0xef // opened - Relay 1
#define set_test_fire2() PORT_C |= 0x08 // closed - Relay 2
#define clear_test_fire2() PORT_C &= 0xf7 // opened - Relay 2
#define clear_laser_ready() PORT_C &= 0xfe // opened - Relay 5
#define set_laser_ready() PORT_C |= 0x01 // closed - Relay 5

#define STAALKAT_CHECK 0x01 // staalkat machine ready signal
#define STAALKAT_READY 0x00 // staalkat machine ready
#define STAALKAT_NOTREADY 0x01 // staalkat machine not ready

#define FW_BW 0x02 // forward backward signal
#define FORWARDS 0x02 // forwards signal
#define BACKWARDS 0x00 // backwards signal

#define L_R 0x04 // left right signal
#define LEFT 0x00 // left signal
#define RIGHT 0x04 // right signal

8: Appendices

- 198 -

#define U_D 0x80 // up down signal
#define UP 0x00 // down position of carraige
#define DOWN 0x80 // up position of carraige

#define SENSE_EGG 0x08 // egg sense signal
#define EGG_PRESENT 0x00 // egg sensed
#define EGG_POSITION 0x10 // egg position to check
#define E_STOP 0x20 // staalkat e-stop signal
#define POSITION_OK 0x00 // position sensed

sbit ENCODER1 = 0xb2; // INT0
sbit ENCODER2 = 0xb4; // T0
sbit A0_PIO2 = 0x91; // address 0 pin for PIO 2
sbit A1_PIO2 = 0x92; // address 1 pin for PIO 2
sbit LEFT_SCANNER_ALARM = 0x93; // low alarm input for left scanner
sbit RIGHT_SCANNER_ALARM = 0x94; // low alarm input for right scanner
sbit TOP_SCANNER_ALARM = 0x95; // low alarm input for top scanner

/***/
/* Variables:- */
/***/

xdata unsigned int position = 0; // counter, encoder offset

// rs-232 variables

data unsigned char in_buff_len = 0;
data unsigned char buffer_full = 0; // buffer data flag
xdata unsigned char rs232_in_buffer[0x1f]; // rs232 input buffer

// egg variables

xdata unsigned long eggs_cleaned; // total number of eggs cleaned
xdata unsigned long rows_cleaned; // total number of rows cleaned
xdata unsigned char egg_position[EGGS_PER_ROW+1]; // log of eggs processed in row

// system control variables

xdata unsigned char system_mode; // manual / automatic mode
xdata unsigned char mirror_state = 0xff;
xdata unsigned char error_status;
xdata unsigned char galvo_count = 0; // counter, galvo position
xdata unsigned char marking_egg = OFF; // flag, egg being fired upon
xdata unsigned char system_ok = OK; // system safe to fire flag

// system configuration settings

struct scanner_data { unsigned char amplitude; // amplitude setting
of scanner, max 63
 unsigned char low_alarm; // low alarm point of
scanner
 unsigned char upper_threshold; // lower laser power
1, upper threshold, max 63
 unsigned char lower_threshold; // lower laser power
2, lower threshold, max 63
 };

struct laser_data { unsigned char high; // laser power high,
max 63
 unsigned char low1; // laser power low 1,
max 63
 unsigned char low2; // laser power low 2,
max 63
 unsigned char test; // laser power test,
max 63
 unsigned char tickle; // laser power tickle,
max 63
 unsigned char frequency; // laser power
frequency, max 63
 };

8: Appendices

- 199 -

struct eeprom_data { unsigned char pulse_delay; // delay between egg
and mark position
 unsigned char start_pos; // position to start
firing on return stroke
 unsigned char stop_pos; // position to stop
firing on return stroke
 unsigned char egg_width; // egg width
 unsigned char egg_spacing; // spacing between
eggs

 unsigned char galvo_max_amp; // galvo maximum
amplitude
 unsigned char galvo_offset; // offset for both
galvos
 unsigned char galvo_scan_profile; // galvo scan
profile

 struct scanner_data top_scanner;
 struct scanner_data left_scanner;
 struct scanner_data right_scanner;

 struct laser_data laser_power;
 };

xdata struct eeprom_data system_settings; // eeprom system
settings structure
xdata struct eeprom_data eeprom_settings;

code struct eeprom_data system_defaults = { 140, // pulse delay
 70, // position to start
firing on return stroke
 100, // position to stop
firing on return stroke, 950, hence *10!
 45, // egg width in pulses
 75, // egg spacing in
pulses
 0xff, // galvo max.
amplitude
 80, // galvo offset
 LINEAR_PROFILE, // galvo scan
profile
 {
 16, // top scanner
amplitude, 0x98
 2, // top scanner low
alarm
 16, // top scanner upper
threshold, 0x90
 15 // top scanner lower
threshold
 },
 {
 40, // left scanner
amplitude, 0xe0
 2, // left scanner low
alarm
 24, // left scanner upper
threshold, 0xd8
 15 // left scanner lower
threshold
 },
 {
 40, // right scanner
amplitude, 0xe0
 2, // right scaner low
alarm
 24, // right scanner upper
threshold, 0xd8
 15 // right scanner lower
threshold
 },
 { // 63 is max. value
allowed for these parameters
 30, // high laser power,
50?
 30, // low1 laser power,
5?

8: Appendices

- 200 -

 30, // low2 laser power,
5?
 5, // test laser power,
5?
 4, // tickle laser power,
4?
 47 // laser frequency,
47?
 }
 };

// fixed code data tables

code unsigned char scan_profile[80] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
 };

code char *lcd_text[12] = { {" "}, // 0: blank line
 {" Ver 1.0 - 20/05/00 "}, // 1: version screen
 {"--------------------"}, // 2: line
 {"Status: INITIALISING"}, // 3: init screen
 {"Status: ERROR "}, // 4: error status
 {"Status: ARMED "}, // 5: armed status
 {"Status: DISARMED "}, // 6: disarmed status
 {"Status: FIRING "}, // 7: firing status
 {"Couldn't arm lasers "}, // 8: can't arm
 {"Eggs : 0 "}, // 9: number of eggs
 {"?|?|?|?|?|?|?|?|?|? "}, // 10: separters
 {"Rows : 0 "} // 11: number of rows
 };

/***/
/* Function Prototypes:- */
/***/

unsigned char initialise_system (void); // initialise system
unsigned char check_faults (void); // check system faults

void combine_lasers (void); // move mirror positions in
void separate_lasers (void); // move mirror positions out
void arm_system (void); // set laser enable signal
void disarm_system (void); // clear laser enable signal
unsigned char fire_lasers (void); // set fire laser signal
void stop_firing_lasers (void); // clear laser fire signal

void encoder_int (void); // encoder interrupt
void decode_rs232_data (void); // decode received rs232 data
char* itoa (unsigned long, unsigned char); // converts number to string

void set_galvos (unsigned char); // set galvo levels

/***/
/*************************** MAIN PROGRAM *************************/
/***/
/* Calls: initialise */
/***/

void main(void)
{
 unsigned char j, k = 0; // local loop variables
 xdata unsigned long l = 0;
 unsigned char egg_count = 0; // counter
 unsigned char egg_pos = 0; // counter for egg positions sensed
 unsigned char egg_pos_flag = 0xff; // flag, egg position state
 unsigned char egg_sensed = 0xff; // flag, egg found
 unsigned char handing = 0xff; // flag, handing of current row
 unsigned char height = 0xff; // flag, carriage height
 unsigned char estop = 0xff; // flag, e-stop status

8: Appendices

- 201 -

 unsigned char staalkat = 0xff; // flag, staalkat machine OK
 unsigned char cleaned_eggs = 0; // counter, number of eggs cleaned
 unsigned char temp_str[10]; // temporary string

 error_status = initialise_system ();

 // error if anything other than eeprom fails
 if (error_status > 1) // failed initialisation
 {
 clear_lcd ();

 while (1)
 {
 print_lcd (lcd_text[4], LINE_1, 0); // error status
 print_lcd (lcd_text[2], LINE_2, 0); // separating line
 print_lcd ("Initialise failed...", LINE_3, 0);
 print_lcd ("Can't run machine! ", LINE_4, 0);

 delay_10ms (100); // flash display
 clear_lcd ();
 delay_10ms (50);
 }
 }
 arm_system ();

 // display egg count
 print_lcd (lcd_text[9], LINE_2, 0);
 strcpy (temp_str, itoa (eggs_cleaned, BASE_10));
 print_lcd (temp_str, LINE_2, 8);

 // display row count
 print_lcd (lcd_text[11], LINE_3, 0);
 strcpy (temp_str, itoa (rows_cleaned, BASE_10));
 print_lcd (temp_str, LINE_3, 8);

 // clear the queue
 for (j = 0; j < (EGGS_PER_ROW+1); j++)
 egg_position[j] = EGG_WAITING;

/************** main program loop starts here ***************/

 while(1)
 {
 if (buffer_full == 1) // check for rs232 data
 decode_rs232_data (); // if so, decode it

 if (system_mode == AUTOMATIC_MODE)
 {
 // egg position on carraige sensed
 if ((PORT_B & EGG_POSITION) == POSITION_OK && egg_pos_flag != ON)
 {
 egg_pos++;
 egg_pos_flag = ON;
 print_lcd ("˜", LINE_4, 10); // show position flag on LCD
 }

 // egg position on carraige not sensed
 if ((PORT_B & EGG_POSITION) != POSITION_OK && egg_pos_flag != OFF)
 {
 egg_pos_flag = OFF;
 print_lcd (".", LINE_4, 10); // show position flag on LCD
 }

 // new egg sensed - leading edge
 if (((PORT_B & SENSE_EGG) == EGG_PRESENT) &&
 egg_sensed != ON &&
 height == UP &&
 mirror_state == SEPARATED)
 {
 egg_sensed = ON; // new egg found
 print_lcd ("˜", LINE_4, 12); // show egg flag on LCD

 egg_position[egg_count++] = system_settings.pulse_delay;
 }

8: Appendices

- 202 -

 // end of egg sensed - trailing edge
 if (((PORT_B & SENSE_EGG) != EGG_PRESENT) && egg_sensed != OFF)
 {
 egg_sensed = OFF;
 print_lcd (".", LINE_4, 12); // show egg flag on LCD
 }

 // fire on new egg if in position
 if ((egg_position[cleaned_eggs] == 0) &&
 ((PORT_B & FW_BW) == FORWARDS) &&
 marking_egg == OFF &&
 system_ok == OK)
 {
 galvo_count = 0; // double check galvo in correct
position
 set_galvos (galvo_count);

 marking_egg = ON;
 if (fire_lasers () != OK)
 marking_egg = OFF;
 }

 // if whole egg marked
 if (galvo_count > system_settings.egg_spacing)
 {
 stop_firing_lasers ();
 galvo_count = 0; // reset galvo position
 set_galvos (galvo_count); // flyback to start

 eggs_cleaned++; // save to eeprom here or at end of row??
 marking_egg = OFF;
 egg_position[cleaned_eggs++] = EGG_CLEANED;

 strcpy (temp_str, itoa (eggs_cleaned, BASE_10));
 print_lcd (temp_str, LINE_2, 8); // display egg count

 delay_10ms (1);
 send_rs232_data ("w", 1); // tell host PC egg cleaned
 }

 // separate lasers for forward stroke
 if ((PORT_B & FW_BW) == FORWARDS && mirror_state != SEPARATED)
 {
 separate_lasers ();

 for (j = 0; j < EGGS_PER_ROW; j++) // clear queue
 egg_position[j] = EGG_WAITING;

 //????????????????????????????? test
 strcpy (temp_str, itoa (position, BASE_10));
 print_lcd (temp_str, LINE_3, 14); // display position????
 //????????????????????????????? end test

 if (system_ok == OK)
 cleaned_eggs = 0;
 egg_count = 0;
 egg_pos = 0;
 position = 0; // reset encoder position

 print_lcd (" ", LINE_4, 4); // show direction flag on LCD
 }

 // combine lasers for return stroke
 if ((PORT_B & FW_BW) == BACKWARDS && mirror_state != COMBINED)
 {
 combine_lasers ();

 //????????????????????????????? test
 strcpy (temp_str, itoa (position, BASE_10));
 print_lcd (temp_str, LINE_3, 14); // display position????
 //????????????????????????????? end test

8: Appendices

- 203 -

 egg_pos = 0; // reset egg position counter
 position = 0; // reset encoder position

 print_lcd ("~", LINE_4, 4); // show direction flag on LCD

 if (system_ok == OK)
 rows_cleaned++;
 strcpy (temp_str, itoa (rows_cleaned, BASE_10));
 print_lcd (temp_str, LINE_3, 8);// display row count

 // 80ms delay with 2 statements below
 i2c_eeprom_count_write (EEPROM, 0x34, eggs_cleaned);
 i2c_eeprom_count_write (EEPROM, 0x38, rows_cleaned);

 temp_str[0] = 'x';

 l = eggs_cleaned;
 temp_str[1] = l % 65536UL;
 l /= 256UL; // knock off lo byte
 temp_str[2] = l % 256UL;
 temp_str[3] = l / 256UL;

 l = rows_cleaned;
 temp_str[4] = l % 65536UL;
 l /= 256UL; // knock off lo byte
 temp_str[5] = l % 256UL;
 temp_str[6] = l / 256UL;
 temp_str[7] = 0;
 send_rs232_data (temp_str, 7);
 }

 // left handed row detected
 if ((PORT_B & L_R) == LEFT && handing != LEFT)
 {
 handing = LEFT;
 print_lcd ("L", LINE_4, 0); // show handing flag on LCD
 }

 // right handed row detected
 if ((PORT_B & L_R) == RIGHT && handing != RIGHT)
 {
 handing = RIGHT;
 print_lcd ("R", LINE_4, 0); // show handing flag on LCD
 }

 // carraige up detected
 if ((PORT_B & U_D) == UP && height != UP)
 {
 height = UP;
 print_lcd ("´", LINE_4, 2); // show height flag on LCD
 }

 // carraige down detected
 if ((PORT_B & U_D) == DOWN && height != DOWN)
 {
 height = DOWN;
 stop_firing_lasers (); // double check for safety

 print_lcd ("ˆ", LINE_4, 2); // show height flag on LCD
 }

 // check for staalkat e-stop active
 if ((PORT_B & E_STOP) == E_STOP && estop != ON)
 {
 estop = ON;
 print_lcd ("E", LINE_4, 6); // show e-stop flag on LCD
 }

8: Appendices

- 204 -

 // check for staalkat e-stop clear
 if ((PORT_B & E_STOP) != E_STOP && estop != OFF)
 {
 estop = OFF;
 print_lcd (".", LINE_4, 6); // show e-stop flag on LCD
 }

 // check for staalkat ready
 if ((PORT_B & STAALKAT_CHECK) == STAALKAT_READY && (staalkat !=
STAALKAT_READY))
 {
 staalkat = STAALKAT_READY;
 system_ok = OK;

 egg_pos = 0; // reset egg position counter
 position = 0; // reset encoder position

 if (mirror_state == SEPARATED)
 {
 for (j = 0; j < EGGS_PER_ROW; j++) // clear queue
 egg_position[j] = EGG_WAITING;

 eggs_cleaned = eggs_cleaned - cleaned_eggs;
 cleaned_eggs = 0;
 egg_count = 0;

 strcpy (temp_str, itoa (eggs_cleaned, BASE_10));
 print_lcd (temp_str, LINE_2, 8); // display egg count

 temp_str[0] = 'x';

 l = eggs_cleaned;
 temp_str[1] = l % 65536UL;
 l /= 256UL; // knock off lo byte
 temp_str[2] = l % 256UL;
 temp_str[3] = l / 256UL;

 l = rows_cleaned;
 temp_str[4] = l % 65536UL;
 l /= 256UL; // knock off lo byte
 temp_str[5] = l % 256UL;
 temp_str[6] = l / 256UL;
 temp_str[7] = 0;
 send_rs232_data (temp_str, 7);
 }
 }

 // check for staalkat not ready
 if ((PORT_B & STAALKAT_CHECK) == STAALKAT_NOTREADY && (staalkat !=
STAALKAT_NOTREADY))
 {
 staalkat = STAALKAT_NOTREADY;
 }

 // fire enable on return stroke
 // do we want to fire on individual eggs here ????

 // what happens here in an error condition????

 if (mirror_state == COMBINED &&
 height == UP &&
 marking_egg == OFF &&
 position > system_settings.start_pos &&
 cleaned_eggs > 0 &&
 system_ok == OK)
 {
 marking_egg = RETURN_ON;
 if (fire_lasers () != OK)
 marking_egg = OFF;
 }

8: Appendices

- 205 -

 // fire disable on return stroke
 if (mirror_state == COMBINED &&
 height == UP &&
 marking_egg == RETURN_ON &&
 (egg_pos > 9 ||
 position > (system_settings.stop_pos * 10)))
 {
 stop_firing_lasers ();
 marking_egg = RETURN_OFF;
 }

 // check faults
 j = check_faults();

 if (j == 0)
 {
 set_laser_ready();
 if (error_status != 0)
 {
 error_status = 0;
 print_lcd (lcd_text[5], LINE_1, 0); // system armed
 print_lcd (lcd_text[9], LINE_2, 0); // egg counter
 print_lcd (lcd_text[11], LINE_3, 0); // row counter

 strcpy (temp_str, itoa (rows_cleaned, BASE_10));
 print_lcd (temp_str, LINE_3, 8); // display row count

 strcpy (temp_str, itoa (eggs_cleaned, BASE_10));
 print_lcd (temp_str, LINE_2, 8); // display egg count
 }
 }
 else
 {
 stop_firing_lasers ();
 clear_laser_ready();
 system_ok = FAIL;
 marking_egg = OFF;
 error_status = j;
 }
 }
 }
}

/***/
/* Name: check_faults */
/* Description: checks faults for system */
/* Input: - */
/* Return Value: unsigned char - error code */
/***/

unsigned char check_faults (void)
{
 unsigned char i;
 unsigned char error = 0;

 // check all scanners are working

 i = (P1 & 0x38);

 switch (i)
 {
 case 0x08: print_lcd (">>LHS scanner fault ", LINE_2, 0);
 break;
 case 0x10: print_lcd (">>RHS scanner fault ", LINE_2, 0);
 break;
 case 0x20: print_lcd (">>Top scanner fault ", LINE_2, 0);
 break;
 case 0x18: print_lcd (">>L/R scanner fault ", LINE_2, 0);
 break;
 case 0x28: print_lcd (">>L/T scanner fault ", LINE_2, 0);
 break;
 case 0x30: print_lcd (">>R/T scanner fault ", LINE_2, 0);
 break;
 case 0x38: print_lcd (">>All scanner fault ", LINE_2, 0);
 break;
 default: break;
 }

8: Appendices

- 206 -

 if (i != 0)
 {
 error = 1;
 print_lcd (lcd_text[2], LINE_3, 0); // line
 print_lcd (lcd_text[4], LINE_1, 0); // status: error
 }

 // check laser DC power supplies

 #ifndef DEV
 i = ((i2c_io_read (I2C_PORT2)) & 0x3f);
 #else
 i = 0;
 #endif

 if (i > 0)
 {
 if (error != 0)
 delay_10ms (100);
 else
 {
 print_lcd (lcd_text[4], LINE_1, 0);
 print_lcd (lcd_text[2], LINE_3, 0);
 }

 print_lcd (">>PSU Fault #", LINE_2, 0);
 error += 2;

 if ((i & 0x01) == 0x01)
 print_lcd ("1", LINE_2, 14);

 if ((i & 0x02) == 0x02)
 print_lcd ("2", LINE_2, 15);

 if ((i & 0x04) == 0x04)
 print_lcd ("3", LINE_2, 16);

 if ((i & 0x08) == 0x08)
 print_lcd ("4", LINE_2, 17);

 if ((i & 0x10) == 0x10)
 print_lcd ("5", LINE_2, 18);

 if ((i & 0x20) == 0x20)
 print_lcd ("6", LINE_2, 19);
 }

 // check laser ok signals

 #ifndef DEV
 i = ((i2c_io_read (I2C_PORT1)) & 0x77);
 #else
 i = 0;
 #endif

 if (i > 0)
 {
 if (error != 0)
 delay_10ms (100);
 else
 print_lcd (lcd_text[4], LINE_1, 0);

 print_lcd (">>Laser1: ", LINE_2, 0);
 print_lcd (">>Laser2: ", LINE_3, 0);
 error += 4;

 if ((i & 0x01) == 0x01) // 2:laser ready
 print_lcd ("Laser Rdy", LINE_3, 10);

 if ((i & 0x02) == 0x02) // 2:key switch ok
 print_lcd ("Key Sw. ", LINE_3, 10);

 if ((i & 0x04) == 0x04) // 2:water ok
 print_lcd ("Low Flow ", LINE_3, 10);

8: Appendices

- 207 -

 if ((i & 0x10) == 0x10) // 1:laser ready
 print_lcd ("Laser Rdy", LINE_2, 10);

 if ((i & 0x20) == 0x20) // 1:key switch ok
 print_lcd ("Key Sw. ", LINE_2, 10);

 if ((i & 0x40) == 0x40) // 1:water ok
 print_lcd ("Low Flow ", LINE_2, 10);

 if (error > 4)
 delay_10ms (100);
 }

 // check mirror positions
 A1_PIO2 = 1;
 A0_PIO2 = 0; // set to read PIO2 Port C
 i = (PIO2 & 0x0f);

 if (mirror_state == SEPARATED && position > 100 &&
 (PORT_B & U_D) == UP) // check mirrors for forward stroke
 {
 if (i != 0x0a)
 {
 error += 8;

 if ((i & 0x05) == 0x01)
 print_lcd (">>Left Mirror fault ", LINE_2, 0);

 if ((i & 0x05) == 0x04)
 print_lcd (">>Right Mirror fault", LINE_2, 0);

 if ((i & 0x05) == 0x05)
 print_lcd (">>Both Mirror fault ", LINE_2, 0);
 }
 }

 if (marking_egg == RETURN_ON) // check mirrors for return stroke
 {
 if (i != 0x05)
 {
 error += 8;

 if ((i & 0x0a) == 0x02)
 print_lcd (">>Left Mirror fault ", LINE_2, 0);

 if ((i & 0x0a) == 0x08)
 print_lcd (">>Right Mirror fault", LINE_2, 0);

 if ((i & 0x0a) == 0x0a)
 print_lcd (">>Both Mirror fault ", LINE_2, 0);
 }
 }

 if (error >= 8)
 {
 print_lcd (lcd_text[2], LINE_3, 0); // line
 print_lcd (lcd_text[4], LINE_1, 0); // status: error
 }

 if (error > 8)
 delay_10ms (100);

 return error;
}

/***/
/* Name: initialise_system */
/* Description: Initialises system components and variables */
/* Input: - */
/* Return Value: - */
/***/

8: Appendices

- 208 -

unsigned char initialise_system (void)
{
 xdata unsigned char error = 0; // error status,0 = OK
 xdata unsigned char i; // local loop variable

 xdata char temp_str[6]; // temporary string

 // configure port settings
 PORT_CONTROL = 0x82; // configure 8255 ports
 A0_PIO2 = 1; // A0 pin for second 8255
 A1_PIO2 = 1; // A1 pin for second 8255
 PIO2 = 0x81; // configure 2nd 8255 PIO

 // configure processor registers
 SCON = 0x50; // initialize UART, 8,N,1
 PS = 0; // uart interrupt priority
 TMOD = 0x21;
 TCON = 1; // external int. edge triggered
 TH1 = 0xfd; // set timer period
 TL1 = 0;
 TR1 = 1; // start timer 1
 IE = 0xb1; // enable serial int. and ext. 1 int.
 RI = 0; // clear serial RX int. flag
 TI = 0; // clear serial TX int. flag
 IE0 = 0; // clear ext. int 0 flag
 SI = 0;
 T1 = 0; // disable scanner trigger

 // configure i2c set-up
 SDA = 1; // enable for SDA line
 SCL = 1; // enable for SCL line
 PS1 = 0; // i2c interrupt priority
 S1ADR = 0x31; // address + general call set
 S1CON = ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0;// configure I2C port

 // enable resonant scanner alarm inputs
 LEFT_SCANNER_ALARM = 1; // enable input line for alarm
 RIGHT_SCANNER_ALARM = 1; // enable input line for alarm
 TOP_SCANNER_ALARM = 1; // enable input line for alarm

 delay_10ms (20); // wait for PSU to settle
 initialise_lcd (); // initialise lcd

 // set-up lcd characters
 send_lcd_control_byte (72); // lcd up character design, 0x01
 send_lcd_data_byte (0);
 send_lcd_data_byte (4);
 send_lcd_data_byte (14);
 send_lcd_data_byte (21);
 send_lcd_data_byte (4);
 send_lcd_data_byte (4);
 send_lcd_data_byte (0);
 send_lcd_data_byte (0);

 send_lcd_data_byte (0); // lcd down character design, 0x02
 send_lcd_data_byte (4);
 send_lcd_data_byte (4);
 send_lcd_data_byte (21);
 send_lcd_data_byte (14);
 send_lcd_data_byte (4);
 send_lcd_data_byte (0);
 send_lcd_data_byte (0);

 send_lcd_data_byte (14); // lcd filled blob char design, 0x03
 send_lcd_data_byte (31);
 send_lcd_data_byte (31);
 send_lcd_data_byte (31);
 send_lcd_data_byte (31);
 send_lcd_data_byte (31);
 send_lcd_data_byte (14);
 send_lcd_data_byte (0);

8: Appendices

- 209 -

 send_lcd_data_byte (0); // lcd tick mark, 0x04
 send_lcd_data_byte (1);
 send_lcd_data_byte (1);
 send_lcd_data_byte (2);
 send_lcd_data_byte (18);
 send_lcd_data_byte (12);
 send_lcd_data_byte (4);
 send_lcd_data_byte (0);

 // show lcd boot-up screen
 print_lcd (lcd_text[3], LINE_1, 0); // initialising status
 print_lcd (lcd_text[2], LINE_2, 0); // separating line
 print_lcd (lcd_text[1], LINE_3, 0); // version number, date
 print_lcd (lcd_text[2], LINE_4, 0); // separating line

 delay_10ms (100); // pause on init screen

 // reset variables
 system_mode = AUTOMATIC_MODE; // set system to automatic mode
 system_settings = system_defaults; // get default settings

 i = 0; // error count for checking eeprom
validity

 // get system settings from eeprom
 if (i2c_eeprom_check (EEPROM, 0x00, 1) == OK)
 {
 eeprom_settings.pulse_delay = i2c_eeprom_read (EEPROM, 0x00);
 system_settings.pulse_delay = eeprom_settings.pulse_delay;
 }
 else
 i++;

 if (i2c_eeprom_check (EEPROM, 0x02, 1) == OK)
 {
 eeprom_settings.start_pos = i2c_eeprom_read (EEPROM, 0x02);
 system_settings.start_pos = eeprom_settings.start_pos;
 }
 else
 i++;

 if (i2c_eeprom_check (EEPROM, 0x04, 1) == OK)
 {
 eeprom_settings.stop_pos = i2c_eeprom_read (EEPROM, 0x04);
 system_settings.stop_pos = eeprom_settings.stop_pos;
 }
 else
 i++;

 if (i2c_eeprom_check (EEPROM, 0x06, 1) == OK)
 {
 eeprom_settings.egg_width = i2c_eeprom_read (EEPROM, 0x06);
 system_settings.egg_width = eeprom_settings.egg_width;
 }
 else
 i++;

 if (i2c_eeprom_check (EEPROM, 0x08, 1) == OK)
 {
 eeprom_settings.egg_spacing = i2c_eeprom_read (EEPROM, 0x08);
 system_settings.egg_spacing = eeprom_settings.egg_spacing;
 }
 else
 i++;

 if (i2c_eeprom_check (EEPROM, 0x0a, 1) == OK)
 {
 eeprom_settings.galvo_max_amp = i2c_eeprom_read (EEPROM, 0x0a);
 system_settings.galvo_max_amp = eeprom_settings.galvo_max_amp;
 }
 else
 i++;

8: Appendices

- 210 -

 if (i2c_eeprom_check (EEPROM, 0x0c, 1) == OK)
 {
 eeprom_settings.galvo_offset = i2c_eeprom_read (EEPROM, 0x0c);
 system_settings.galvo_offset = eeprom_settings.galvo_offset;
 }
 else
 i++;

 if (i2c_eeprom_check (EEPROM, 0x0e, 1) == OK)
 {
 eeprom_settings.galvo_scan_profile = i2c_eeprom_read (EEPROM, 0x0e);
 system_settings.galvo_scan_profile = eeprom_settings.galvo_scan_profile;
 }
 else
 i++;

 // get top resonant scanner settings from eeprom
 if (i2c_eeprom_check (EEPROM, 0x10, 1) == OK)
 {
 eeprom_settings.top_scanner.amplitude = i2c_eeprom_read (EEPROM, 0x10);
 system_settings.top_scanner.amplitude =
eeprom_settings.top_scanner.amplitude;
 }
 else
 i++;

 if (i2c_eeprom_check (EEPROM, 0x12, 1) == OK)
 {
 eeprom_settings.top_scanner.low_alarm = i2c_eeprom_read (EEPROM, 0x12);
 system_settings.top_scanner.low_alarm = eeprom_settings.top_scanner.low_alarm;
 }
 else
 i++;

 if (i2c_eeprom_check (EEPROM, 0x14, 1) == OK)
 {
 eeprom_settings.top_scanner.upper_threshold = i2c_eeprom_read (EEPROM,
0x14);
 system_settings.top_scanner.upper_threshold =
eeprom_settings.top_scanner.upper_threshold;
 }
 else
 i++;

 if (i2c_eeprom_check (EEPROM, 0x16, 1) == OK)
 {
 eeprom_settings.top_scanner.lower_threshold = i2c_eeprom_read (EEPROM, 0x16);
 system_settings.top_scanner.lower_threshold =
eeprom_settings.top_scanner.lower_threshold;
 }
 else
 i++;

 // get left resonant scanner settings from eeprom
 if (i2c_eeprom_check (EEPROM, 0x18, 1) == OK)
 {
 eeprom_settings.left_scanner.amplitude = i2c_eeprom_read (EEPROM, 0x18);
 system_settings.left_scanner.amplitude =
eeprom_settings.left_scanner.amplitude;
 }
 else
 i++;

 if (i2c_eeprom_check (EEPROM, 0x1a, 1) == OK)
 {
 eeprom_settings.left_scanner.low_alarm = i2c_eeprom_read (EEPROM, 0x1a);
 system_settings.left_scanner.low_alarm =
eeprom_settings.left_scanner.low_alarm;
 }
 else
 i++;

8: Appendices

- 211 -

 if (i2c_eeprom_check (EEPROM, 0x1c, 1) == OK)
 {
 eeprom_settings.left_scanner.upper_threshold = i2c_eeprom_read (EEPROM, 0x1c);
 system_settings.left_scanner.upper_threshold =
eeprom_settings.left_scanner.upper_threshold;
 }
 else
 i++;

 if (i2c_eeprom_check (EEPROM, 0x1e, 1) == OK)
 {
 eeprom_settings.left_scanner.lower_threshold = i2c_eeprom_read (EEPROM, 0x1e);
 system_settings.left_scanner.lower_threshold =
eeprom_settings.left_scanner.lower_threshold;
 }
 else
 i++;

 // get right resonant scanner settings from eeprom
 if (i2c_eeprom_check (EEPROM, 0x20, 1) == OK)
 {
 eeprom_settings.right_scanner.amplitude = i2c_eeprom_read (EEPROM, 0x20);
 system_settings.right_scanner.amplitude =
eeprom_settings.right_scanner.amplitude;
 }
 else
 i++;

 if (i2c_eeprom_check (EEPROM, 0x22, 1) == OK)
 {
 eeprom_settings.right_scanner.low_alarm = i2c_eeprom_read (EEPROM, 0x22);
 system_settings.right_scanner.low_alarm =
eeprom_settings.right_scanner.low_alarm;
 }
 else
 i++;

 if (i2c_eeprom_check (EEPROM, 0x24, 1) == OK)
 {
 eeprom_settings.right_scanner.upper_threshold = i2c_eeprom_read (EEPROM,
0x24);
 system_settings.right_scanner.upper_threshold =
eeprom_settings.right_scanner.upper_threshold;
 }
 else
 i++;

 if (i2c_eeprom_check (EEPROM, 0x26, 1) == OK)
 {
 eeprom_settings.right_scanner.lower_threshold = i2c_eeprom_read (EEPROM,
0x26);
 system_settings.right_scanner.lower_threshold =
eeprom_settings.right_scanner.lower_threshold;
 }
 else
 i++;

 // get laser settings from eeprom
 if (i2c_eeprom_check (EEPROM, 0x28, 1) == OK)
 {
 eeprom_settings.laser_power.high = i2c_eeprom_read (EEPROM, 0x28);
 system_settings.laser_power.high = eeprom_settings.laser_power.high;
 }
 else
 i++;

 if (i2c_eeprom_check (EEPROM, 0x2a, 1) == OK)
 {
 eeprom_settings.laser_power.low1 = i2c_eeprom_read (EEPROM, 0x2a);
 system_settings.laser_power.low1 = eeprom_settings.laser_power.low1;
 }
 else
 i++;

8: Appendices

- 212 -

 if (i2c_eeprom_check (EEPROM, 0x2c, 1) == OK)
 {
 eeprom_settings.laser_power.low2 = i2c_eeprom_read (EEPROM, 0x2c);
 system_settings.laser_power.low2 = eeprom_settings.laser_power.low2;
 }
 else
 i++;

 if (i2c_eeprom_check (EEPROM, 0x2e, 1) == OK)
 {
 eeprom_settings.laser_power.test = i2c_eeprom_read (EEPROM, 0x2e);
 system_settings.laser_power.test = eeprom_settings.laser_power.test;
 }
 else
 i++;

 if (i2c_eeprom_check (EEPROM, 0x30, 1) == OK)
 {
 eeprom_settings.laser_power.tickle = i2c_eeprom_read (EEPROM, 0x30);
 system_settings.laser_power.tickle = eeprom_settings.laser_power.tickle;
 }
 else
 i++;

 if (i2c_eeprom_check (EEPROM, 0x32, 1) == OK)
 {
 eeprom_settings.laser_power.frequency = i2c_eeprom_read (EEPROM, 0x32);
 system_settings.laser_power.frequency = eeprom_settings.laser_power.frequency;
 }
 else
 i++;

 if (i2c_eeprom_check (EEPROM, 0x34, 3) == OK)
 eggs_cleaned = i2c_eeprom_count_read (EEPROM, 0x34); // get current
count
 else
 {
 i++;
 eggs_cleaned = 0;
 }

 if (i2c_eeprom_check (EEPROM, 0x38, 3) == OK)
 rows_cleaned = i2c_eeprom_count_read (EEPROM, 0x38); // get current
count
 else
 {
 i++;
 rows_cleaned = 0;
 }

 // check and show error if eeprom not read correctly
 clear_lcd ();

 if (i != 0) // error reading eeprom
 {
 print_lcd ("EEPROM read: X- ", LINE_1, 0);
 strcpy (temp_str, itoa (i, BASE_10));
 print_lcd (temp_str, LINE_1, 17); // display error no.
 print_lcd (lcd_text[2], LINE_2, 0); // print line on lcd
 print_lcd ("Some system settings", LINE_3, 0);
 print_lcd ("returned to default.", LINE_4, 0);

 delay_10ms (250);
 print_lcd (lcd_text[0], LINE_2, 0); // clear other lines
 print_lcd (lcd_text[0], LINE_3, 0);
 print_lcd (lcd_text[0], LINE_4, 0);

 error = 1; // error initialsing eeprom
 }
 else
 print_lcd ("EEPROM read: ", LINE_1, 0);

 #ifndef DEV

8: Appendices

- 213 -

 // set-up laser power settings
 i = i2c_e2pot (DIGITAL_POT1, LASER_CLOCK_FREQ,
system_settings.laser_power.frequency);
 i += 2*(i2c_e2pot (DIGITAL_POT1, LASER_HIGH_POWER,
system_settings.laser_power.high));
 i += 4*(i2c_e2pot (DIGITAL_POT1, LASER_LOW_POWER1,
system_settings.laser_power.low1));
 i += 8*(i2c_e2pot (DIGITAL_POT2, LASER_LOW_POWER2,
system_settings.laser_power.low2));
 i += 16*(i2c_e2pot (DIGITAL_POT2, LASER_TEST_POWER,
system_settings.laser_power.test));
 i += 32*(i2c_e2pot (DIGITAL_POT2, LASER_TICKLE_POWER,
system_settings.laser_power.tickle));

 #else
 i = 1;
 #endif

 if (i != 0)
 {
 print_lcd ("Laser init.: X- ", LINE_2, 0);
 strcpy (temp_str, itoa (i, BASE_10));
 print_lcd (temp_str, LINE_2, 17); // display error no.
 error += 2; // error initialising lasers
 }
 else
 print_lcd ("Laser init.: ¯ ", LINE_2, 0);

 #ifndef DEV

 // set-up left resonant scanner settings
 i = i2c_dac (LEFT_SCANNER, SCANNER_AMPLITUDE, 0xff); // kick start scanner
 delay_10ms (100); // wait to settle
 i += 2*(i2c_dac (LEFT_SCANNER, SCANNER_AMPLITUDE,
system_settings.left_scanner.amplitude));
 i += 4*(i2c_dac (LEFT_SCANNER, SCANNER_ALARM,
system_settings.left_scanner.low_alarm));
 i += 8*(i2c_dac (LEFT_SCANNER, POS_THRESHOLD,
system_settings.left_scanner.upper_threshold));
 i += 16*(i2c_dac (LEFT_SCANNER, NEG_THRESHOLD,
system_settings.left_scanner.lower_threshold));

 #else
 i = 1;
 #endif

 if (i != 0)
 {
 print_lcd ("LHS scan init: X- ", LINE_3, 0);
 strcpy (temp_str, itoa (i, BASE_10));
 print_lcd (temp_str, LINE_3, 17); // display error no.
 error += 4; // error initialising LHS scanner
 }
 else
 print_lcd ("LHS scan init: ¯ ", LINE_3, 0);

 #ifndef DEV

 // set-up right resonant scanner settings
 i = i2c_dac (RIGHT_SCANNER, SCANNER_AMPLITUDE, 0xff); // kick start scanner
 delay_10ms (100); // wait to settle
 i += 2*(i2c_dac (RIGHT_SCANNER, SCANNER_AMPLITUDE,
system_settings.right_scanner.amplitude));
 i += 4*(i2c_dac (RIGHT_SCANNER, SCANNER_ALARM,
system_settings.right_scanner.low_alarm));
 i += 8*(i2c_dac (RIGHT_SCANNER, POS_THRESHOLD,
system_settings.right_scanner.upper_threshold));
 i += 16*(i2c_dac (RIGHT_SCANNER, NEG_THRESHOLD,
system_settings.right_scanner.lower_threshold));

 #else
 i = 1;
 #endif

8: Appendices

- 214 -

 if (i != 0)
 {
 print_lcd ("RHS scan init: X- ", LINE_4, 0);
 strcpy (temp_str, itoa (i, BASE_10));
 print_lcd (temp_str, LINE_4, 17); // display error no.
 error += 8; // error initialising RHS scanner
 }
 else
 print_lcd ("RHS scan init: ¯ ", LINE_4, 0);

 #ifndef DEV

 // set-up top resonant scanner settings
 i = i2c_dac (TOP_SCANNER, SCANNER_AMPLITUDE, 0xff); // kick start scanner
 delay_10ms (100); // wait to settle
 i += 2*(i2c_dac (TOP_SCANNER, SCANNER_AMPLITUDE,
system_settings.top_scanner.amplitude));
 i += 4*(i2c_dac (TOP_SCANNER, SCANNER_ALARM,
system_settings.top_scanner.low_alarm));
 i += 8*(i2c_dac (TOP_SCANNER, POS_THRESHOLD,
system_settings.top_scanner.upper_threshold));
 i += 16*(i2c_dac (TOP_SCANNER, NEG_THRESHOLD,
system_settings.top_scanner.lower_threshold));

 #else
 i = 1;
 #endif

 delay_10ms (100); // wait
 clear_lcd (); // clear ready for next screen set

 if (i != 0)
 {
 print_lcd ("Top scan init: X- ", LINE_1, 0);
 strcpy (temp_str, itoa (i, BASE_10));
 print_lcd (temp_str, LINE_1, 17); // display error no.
 error += 16; // error initialising top scanner
 }
 else
 print_lcd ("Top scan init: ¯ ", LINE_1, 0);

 // set-up galvanometer settings
 set_dtoas (system_settings.galvo_offset);

 // check to see if all resonant scanners are ok
 print_lcd ("Top Scanner : ", LINE_2, 0);
 print_lcd ("Left Scanner : ", LINE_3, 0);
 print_lcd ("Right Scanner: ", LINE_4, 0);

 if (TOP_SCANNER_ALARM == OFF) // check top resonant scanner
 print_lcd ("¯", LINE_2, 15);
 else
 {
 print_lcd ("X", LINE_2, 15);
 error |= 32; // scanner not reached correct
amplitude
 }

 if (LEFT_SCANNER_ALARM == OFF) // check left resonant scanner
 print_lcd ("¯", LINE_3, 15);
 else
 {
 print_lcd ("X", LINE_3, 15);
 error |= 32; // scanner not reached correct
amplitude
 }

 if (RIGHT_SCANNER_ALARM == OFF) // check right resonant scanner
 print_lcd ("¯", LINE_4, 15);
 else
 {
 print_lcd ("X", LINE_4, 15);

8: Appendices

- 215 -

 error |= 32; // scanner not reached correct
amplitude
 }

 // check all 6 laser dc power supplies are ok
 delay_10ms (250);
 clear_lcd ();

 print_lcd (" LASER DC PSUs: ", LINE_1, 0);
 print_lcd (" L1 L2 L3 R1 R2 R3 ", LINE_2, 0);
 print_lcd (lcd_text[2], LINE_3, 0); // print line on lcd

 #ifndef DEV
 i = i2c_io_read (I2C_PORT2);
 #else
 i = 0xff;
 #endif

 if ((i & 0x01) == 0x01) // check laser dc psu #1
 print_lcd ("X", LINE_4, 2);
 else
 print_lcd ("¯", LINE_4, 1);

 if ((i & 0x02) == 0x02) // check laser dc psu #2
 print_lcd ("X", LINE_4, 5);
 else
 print_lcd ("¯", LINE_4, 4);

 if ((i & 0x04) == 0x04) // check laser dc psu #3
 print_lcd ("X", LINE_4, 8);
 else
 print_lcd ("¯", LINE_4, 7);

 if ((i & 0x08) == 0x08) // check laser dc psu #4
 print_lcd ("X", LINE_4, 12);
 else
 print_lcd ("¯", LINE_4, 11);

 if ((i & 0x10) == 0x10) // check laser dc psu #5
 print_lcd ("X", LINE_4, 15);
 else
 print_lcd ("¯", LINE_4, 14);

 if ((i & 0x20) == 0x20) // check lasee dc psu #6
 print_lcd ("X", LINE_4, 18);
 else
 print_lcd ("¯", LINE_4, 17);

 if ((i & 0x3f) != 0)
 error += 64; // falult dc laser supply

 delay_10ms (250); // delay for 1 second
 clear_lcd ();
 print_lcd (lcd_text[10], LINE_4, 0); // Line of separaters

 disarm_system (); // clear laser safety relay
 stop_firing_lasers (); // set laser enable gate low
 clear_test_fire1(); // clear test fire 1 signal
 clear_test_fire2(); // clear test fire 2 signal

 GREEN_LED = ON; // set green status led

 return (error); // return error status
}

/***/
/* Name: arm_system */
/* Description: enables laser safety relay */
/* Inputs: - */
/* Return Value: - */
/***/

8: Appendices

- 216 -

void arm_system (void)
{
 PORT_C |= 0x02; // laser enable relay closed - Relay 4

 RED_LED = ON; // show red - armed led on CPU board
 print_lcd (lcd_text[5], LINE_1, 0); // Status: ARMED
 print_lcd ("A", LINE_4, 8); // show armed flag on LCD
}

/***/
/* Name: disarm_system */
/* Description: diables laser safety relay */
/* Input: - */
/* Return Value: - */
/***/

void disarm_system (void)
{
 PORT_C &= 0xfd; // laser enable relay opened - Relay 4

 GREEN_LED = ON; // show green - safe led on CPU board
 print_lcd (lcd_text[6], LINE_1,0); // status disarmed
 print_lcd ("D", LINE_4, 8); // show disarmed flag on LCD

 clear_laser_ready(); // reset system ready flag to Staalkat
}

/***/
/* Name: combine_lasers */
/* Description: moves mirrors out for the return stroke */
/* Input: - */
/* Return Value: - */
/***/

void combine_lasers (void)
{
 PORT_C |= 0x04; // mirror relay closed - Relay 3

 A1_PIO2 = 1;
 A0_PIO2 = 0;
 PIO2 |= 0x80; // mirror move signal to laser controller

 mirror_state = COMBINED;
 print_lcd ("C", LINE_4, 16); // show laser combined flag on LCD

 send_rs232_data ("E", 1);
}

/***/
/* Name: separate_lasers */
/* Description: moves the mirrors to the home position */
/* Input: - */
/* Return Value: */
/***/

void separate_lasers (void)
{
 PORT_C &= 0xfb; // mirror relay opened - Relay 3

 A1_PIO2 = 1;
 A0_PIO2 = 0;
 PIO2 &= 0x7f; // mirror move signal to laser controller

 mirror_state = SEPARATED;
 print_lcd ("S", LINE_4, 16); // show laser separated flag on LCD

 send_rs232_data ("F", 1);
}

8: Appendices

- 217 -

/***/
/* Name: fire_lasers */
/* Description: sets laser gate pulse high to fire lasers */
/* Input: - */
/* Return Value: unsigned char */
/* 0 = OK */
/***/

unsigned char fire_lasers (void)
{
 if (check_faults() != 0)
 return (1);

 if ((PORT_B & U_D) == DOWN) // check carraige in up position
 return (2);

 if ((PORT_B & E_STOP) == E_STOP) // check e-stop
 return (3);

 if ((PORT_B & STAALKAT_READY) != STAALKAT_READY) // check staalkat machine OK
 return (4);

 A1_PIO2 = 1;
 A0_PIO2 = 0;
 PIO2 |= 0x40;

 print_lcd (lcd_text[7], LINE_1, 0); // Status: FIRING
 print_lcd ("F", LINE_4, 14); // show laser firing flag on LCD

 send_rs232_data ("G", 1); // tell host PC lasers are firing

 return (OK);
}

/***/
/* Name: stop_firing_lasers */
/* Description: clears laser gate signal to low to stop firing */
/* Input: - */
/* Return Value: - */
/***/

void stop_firing_lasers (void)
{
 A1_PIO2 = 1;
 A0_PIO2 = 0;
 PIO2 &= 0xBf;

 print_lcd (lcd_text[5], LINE_1, 0); // Status: ARMED
 print_lcd (".", LINE_4, 14); // show laser not firing flag on LCD

 marking_egg = OFF;

 send_rs232_data ("H", 1); // tell host pc lasers stopped firing
}

/**/
/* Name: encoder_int */
/* Description: encoder interrupt routine */
/* Input: - */
/* Return Value: - */
/**/

void encoder_int(void) interrupt 0
{
 unsigned char j = 0;

 position++; // increase position counter

 if (marking_egg == ON && system_ok == OK) // if lasers firing, track egg
 set_galvos (galvo_count++);

8: Appendices

- 218 -

 if ((PORT_B & FW_BW) == FORWARDS)
 {
 for (j = 0; j < EGGS_PER_ROW; j++)
 {
 if ((egg_position[j] < EGG_CLEANED) && (egg_position[j] > 0))
 egg_position[j]--;
 }
 }
}

/***/
/* Name: decode_rs232_data */
/* Description: decode rs232 data received */
/* Input: - */
/* Return Value: - */
/***/

void decode_rs232_data (void)
{
 unsigned char rsdata[10];
 xdata unsigned long l;
 xdata unsigned char temp[30];
 unsigned char count1;
 unsigned char count2;

 // if first byte is not valid start of header or end byte not end of
 // transmission - ignore
 if (rs232_in_buffer[0] != SOH || rs232_in_buffer[in_buff_len-1] != EOT)
 {
 buffer_full = 0; // reset buffer flag
 in_buff_len = 0; // reset length of byffer counter
 rs232_in_buffer[0] = 0; // clear rs232 input buffer
 return; // exit routine
 }

 // extract substitution bytes
 for (count1 = 1, count2 = 0; count1 < in_buff_len; count1++)
 {
 // count1 = 1, miss off 1st byte which is start of header
 // count2 - new string position pointer

 if (rs232_in_buffer[count1] != SUB) // normal byte found
 {
 if (rs232_in_buffer[count1] != EOT) // and not end of transmission
 rsdata[count2++] = rs232_in_buffer[count1]; // save into new
string
 }
 else // substitution byte found
 {
 count1++; // strip out substitution byte
 rsdata[count2++] = rs232_in_buffer[count1] ^ 0x20; // reconstitute
byte
 }
 }
 rsdata[count2] = 0; // terminate end of new data

 buffer_full = 0; // reset buffer flag
 in_buff_len = 0; // reset length of input buffer counter
 rs232_in_buffer[0] = 0; // clear rs232 input buffer

 switch (rsdata[0])
 {
 // arm system via laser enble realy
 case 'A': arm_system ();
 break;

 // disarm system via clearing laser enable relay
 case 'B': disarm_system ();
 break;

 // set laser ready relay to signal to Staalkat machine
 case 'C': set_laser_ready();
 break;

8: Appendices

- 219 -

 // clear laser ready relay to signal that laser system is not ready
 case 'D': clear_laser_ready();
 break;

 // combine two lasers for return stroke, clears move mirrors relay
 case 'E': combine_lasers ();
 break;

 // separates laser for forward stroke, sets move mirrors relay
 case 'F': separate_lasers ();
 break;

 // fire lasers, sets laser fire pulse high
 case 'G': fire_lasers ();
 break;

 // stop firing lasers, sets laser fire pulse low
 case 'H': stop_firing_lasers ();
 break;

 // set system into automatic mode for normal operation
 case 'I': system_mode = AUTOMATIC_MODE;
 send_rs232_data ("I", 1);
 break;

 // set system into manual mode for testing
 case 'J': system_mode = MANUAL_MODE;
 send_rs232_data ("J", 1);
 break;

 // reset counters
 case 'K': count1 = i2c_eeprom_count_write (EEPROM, 0x34, 0);
 if (count1 == 0)
 eggs_cleaned = 0;

 count2 = i2c_eeprom_count_write (EEPROM, 0x38, 0);
 if (count2 == 0)
 rows_cleaned = 0;

 if (PORT_C & 0x01 == 0x01) // laser system is armed and ready
 {
 strcpy (temp, itoa (eggs_cleaned, BASE_10));
 print_lcd (lcd_text[9], LINE_2, 0);
 print_lcd (temp, LINE_2, 8); // display egg count

 strcpy (temp, itoa (rows_cleaned, BASE_10));
 print_lcd (lcd_text[11], LINE_3, 0);
 print_lcd (temp, LINE_3, 8); // display row count
 }

 temp[0] = 'K';
 temp[1] = count1;
 temp[2] = count2;
 temp[3] = 0;
 send_rs232_data (temp, 3);
 break;

 // set galvonometer scan patterns
 case 'L': system_settings.galvo_scan_profile = rsdata[1];

 temp[0] = 'L';
 temp[1] = system_settings.galvo_scan_profile;
 temp[2] = 0;
 send_rs232_data (temp, 2);
 break;

 // set maximum galvonometer amplitudes for both sides
 case 'M': system_settings.galvo_max_amp = rsdata[1];

 temp[0] = 'M';
 temp[1] = system_settings.galvo_max_amp;
 temp[2] = 0;
 send_rs232_data (temp, 2);
 break;

8: Appendices

- 220 -

 // set galvonometer offsets for both sides
 case 'N': system_settings.galvo_offset = rsdata[1];

 temp[0] = 'N';
 temp[1] = system_settings.galvo_offset;
 temp[2] = 0;
 send_rs232_data (temp, 2);
 break;

 // set amplitude of LHS resonant scanner
 case 'O': system_settings.left_scanner.amplitude = rsdata[1];
 count1 = i2c_dac (LEFT_SCANNER, SCANNER_AMPLITUDE,
system_settings.left_scanner.amplitude);

 if (count1 == 0) // command received and ok
 {
 temp[0] = 'O';
 temp[1] = system_settings.left_scanner.amplitude;
 temp[2] = 0;
 send_rs232_data (temp, 2);
 }
 break;

 // set amplitude of RHS resonant scanner
 case 'P': system_settings.right_scanner.amplitude = rsdata[1];
 count1 = i2c_dac (RIGHT_SCANNER, SCANNER_AMPLITUDE,
system_settings.right_scanner.amplitude);

 if (count1 == 0) // command received and ok
 {
 temp[0] = 'P';
 temp[1] = system_settings.right_scanner.amplitude;
 temp[2] = 0;
 send_rs232_data (temp, 2);
 }
 break;

 // set amplitude of top resonant scanner
 case 'Q': system_settings.top_scanner.amplitude = rsdata[1];
 count1 = i2c_dac (TOP_SCANNER, SCANNER_AMPLITUDE,
system_settings.top_scanner.amplitude);

 if (count1 == 0) // command received and ok
 {
 temp[0] = 'Q';
 temp[1] = system_settings.top_scanner.amplitude;
 temp[2] = 0;
 send_rs232_data (temp, 2);
 }
 break;

 // set high laser power
 case 'R': system_settings.laser_power.high = rsdata[1];
 count1 = i2c_e2pot (DIGITAL_POT1, LASER_HIGH_POWER,
system_settings.laser_power.high);

 if (count1 == 0) // command received and ok
 {
 temp[0] = 'R';
 temp[1] = system_settings.laser_power.high;
 temp[2] = 0;
 send_rs232_data (temp, 2);
 }
 break;

 // set low 1 laser power
 case 'S': system_settings.laser_power.low1 = rsdata[1];
 count1 = i2c_e2pot (DIGITAL_POT1, LASER_LOW_POWER1,
system_settings.laser_power.low1);

 if (count1 == 0) // command received and ok
 {
 temp[0] = 'S';
 temp[1] = system_settings.laser_power.low1;
 temp[2] = 0;
 send_rs232_data (temp, 2);
 }

8: Appendices

- 221 -

 break;

 // set low 2 laser power
 case 'T': system_settings.laser_power.low2 = rsdata[1];
 count1 = i2c_e2pot (DIGITAL_POT2, LASER_LOW_POWER2,
system_settings.laser_power.low2);

 if (count1 == 0) // command received and ok
 {
 temp[0] = 'T';
 temp[1] = system_settings.laser_power.low2;
 temp[2] = 0;
 send_rs232_data (temp, 2);
 }
 break;

 // set test laser power
 case 'U': system_settings.laser_power.test = rsdata[1];
 count1 = i2c_e2pot (DIGITAL_POT2, LASER_TEST_POWER,
system_settings.laser_power.test);

 if (count1 == 0) // command received and ok
 {
 temp[0] = 'U';
 temp[1] = system_settings.laser_power.test;
 temp[2] = 0;
 send_rs232_data (temp, 2);
 }
 break;

 // set tickle laser power
 case 'V': system_settings.laser_power.tickle = rsdata[1];
 count1 = i2c_e2pot (DIGITAL_POT2, LASER_TICKLE_POWER,
system_settings.laser_power.tickle);

 if (count1 == 0) // command received and ok
 {
 temp[0] = 'V';
 temp[1] = system_settings.laser_power.tickle;
 temp[2] = 0;
 send_rs232_data (temp, 2);
 }
 break;

 // set low alarm point for LHS resonant scanner
 case 'W': system_settings.left_scanner.low_alarm = rsdata[1];
 count1 = i2c_dac (LEFT_SCANNER, SCANNER_ALARM,
system_settings.left_scanner.low_alarm);

 if (count1 == 0) // command received and ok
 {
 temp[0] = 'W';
 temp[1] = system_settings.left_scanner.low_alarm;
 temp[2] = 0;
 send_rs232_data (temp, 2);
 }
 break;

 // set low alarm point for RHS resonant scanner
 case 'X': system_settings.right_scanner.low_alarm = rsdata[1];
 count1 = i2c_dac (RIGHT_SCANNER, SCANNER_ALARM,
system_settings.right_scanner.low_alarm);

 if (count1 == 0) // command received and ok
 {
 temp[0] = 'X';
 temp[1] = system_settings.right_scanner.low_alarm;
 temp[2] = 0;
 send_rs232_data (temp, 2);
 }
 break;

 // set low alarm point for top resonant scanner
 case 'Y': system_settings.top_scanner.low_alarm = rsdata[1];
 count1 = i2c_dac (TOP_SCANNER, SCANNER_ALARM,
system_settings.top_scanner.low_alarm);

8: Appendices

- 222 -

 if (count1 == 0) // command received and ok
 {
 temp[0] = 'Y';
 temp[1] = system_settings.top_scanner.low_alarm;
 temp[2] = 0;
 send_rs232_data (temp, 2);
 }
 break;

 // request from host PC to send current status bytes
 case 'Z': A1_PIO2 = 1;
 A0_PIO2 = 0; // set to read PIO2 Port C

 temp[0] = 'Z';
 temp[1] = PORT_B; // get PIO1, Port B data
 temp[2] = PIO2; // get PIO2, Port C data
 temp[2] &= 0x0f; // mask off top nibble

 if (LEFT_SCANNER_ALARM == OFF)
 temp[2] += 0x10;

 if (RIGHT_SCANNER_ALARM == OFF)
 temp[2] += 0x20;

 if (TOP_SCANNER_ALARM == OFF)
 temp[2] += 0x40;

 #ifndef DEV
 temp[3] = i2c_io_read (I2C_PORT2); // get dc psu status
 temp[4] = i2c_io_read (I2C_PORT1); // get laser status
 #else
 temp[3] = 0x00;
 temp[4] = 0x00;
 #endif

 temp[5] = 0; // end of temp string
 send_rs232_data (temp, 5); // send data to rs232 port
 break;

 // set test fire 1 relay
 case '#': set_test_fire1();
 send_rs232_data ("#", 1);
 break;

 // set test fire 2 relay
 case '?': set_test_fire2();
 send_rs232_data ("?", 1);
 break;

 case '$': clear_test_fire1(); /* clear test fire 1 relay */
 clear_test_fire2(); /* clear test fire 2 relay */
 send_rs232_data ("$", 1);
 break;

 case '&': clear_test_fire1(); // clear test fire 1 relay
 clear_test_fire2(); // clear test fire 2 relay
 send_rs232_data ("&", 1);
 break;

 // set frequency for laser systems
 case '+': system_settings.laser_power.frequency = rsdata[1];
 count1 = i2c_e2pot (DIGITAL_POT1, LASER_CLOCK_FREQ,
system_settings.laser_power.frequency);

 if (count1 == 0) // command received and ok
 {
 temp[0] = '+';
 temp[1] = system_settings.laser_power.frequency;
 temp[2] = 0;
 send_rs232_data (temp, 2);
 }
 break;

8: Appendices

- 223 -

 // left scanner upper set point
 case 'a': system_settings.left_scanner.upper_threshold = rsdata[1];
 i2c_dac (LEFT_SCANNER, POS_THRESHOLD,
system_settings.left_scanner.upper_threshold);
 break;

 // right scanner upper set point
 case 'b': system_settings.right_scanner.upper_threshold = rsdata[1];
 i2c_dac (RIGHT_SCANNER, POS_THRESHOLD,
system_settings.right_scanner.upper_threshold);
 break;

 // top scanner upper set point
 case 'c': system_settings.top_scanner.upper_threshold = rsdata[1];
 i2c_dac (TOP_SCANNER, POS_THRESHOLD,
system_settings.top_scanner.upper_threshold);
 break;

 // left scanner lower set point
 case 'd': system_settings.left_scanner.lower_threshold = rsdata[1];
 i2c_dac (LEFT_SCANNER, NEG_THRESHOLD,
system_settings.left_scanner.lower_threshold);
 break;

 // right scanner lower set point
 case 'e':system_settings.right_scanner.lower_threshold = rsdata[1];
 i2c_dac (RIGHT_SCANNER, NEG_THRESHOLD,
system_settings.right_scanner.lower_threshold);
 break;

 // top scanner lower set point
 case 'f': system_settings.top_scanner.lower_threshold = rsdata[1];
 i2c_dac (TOP_SCANNER, NEG_THRESHOLD,
system_settings.top_scanner.lower_threshold);
 break;

 // set forward delay value
 case 'k': system_settings.pulse_delay = rsdata[1];

 temp[0] = 'k';
 temp[1] = system_settings.pulse_delay;
 temp[2] = 0;
 send_rs232_data (temp, 2);
 break;

 // set return start firing position
 case 'l': system_settings.start_pos = rsdata[1];

 temp[0] = 'l';
 temp[1] = system_settings.start_pos;
 temp[2] = 0;
 send_rs232_data (temp, 2);
 break;

 // set return end firing position
 case 'm': system_settings.stop_pos = rsdata[1];

 temp[0] = 'm';
 temp[1] = system_settings.stop_pos;
 temp[2] = 0;
 send_rs232_data (temp, 2);
 break;

 // set egg spacing between eggs in pulses
 case 'n': system_settings.egg_spacing = rsdata[1];

 temp[0] = 'n';
 temp[1] = system_settings.egg_spacing;
 temp[2] = 0;
 send_rs232_data (temp, 2);
 break;

 // set width of eggs in pulses
 case 'o': system_settings.egg_width = rsdata[1];

8: Appendices

- 224 -

 temp[0] = 'o';
 temp[1] = system_settings.egg_width;
 temp[2] = 0;
 send_rs232_data (temp, 2);
 break;

 // reset system to eprom default settings
 case 'p': system_settings = system_defaults;
 send_rs232_data ("p", 1);
 break;

 // send current system settings to host PC
 case 'q': temp[0] = 'q';

 temp[1] = system_settings.pulse_delay;
 temp[2] = system_settings.start_pos;
 temp[3] = system_settings.stop_pos;
 temp[4] = system_settings.egg_width;
 temp[5] = system_settings.egg_spacing;

 temp[6] = system_settings.galvo_max_amp;
 temp[7] = system_settings.galvo_offset;
 temp[8] = system_settings.galvo_scan_profile;

 temp[9] = system_settings.laser_power.high;
 temp[10] = system_settings.laser_power.low1;
 temp[11] = system_settings.laser_power.low2;
 temp[12] = system_settings.laser_power.test;
 temp[13] = system_settings.laser_power.tickle;
 temp[14] = system_settings.laser_power.frequency;

 temp[15] = system_settings.top_scanner.amplitude;
 temp[16] = system_settings.left_scanner.amplitude;
 temp[17] = system_settings.right_scanner.amplitude;

 temp[18] = system_settings.top_scanner.low_alarm;
 temp[19] = system_settings.left_scanner.low_alarm;
 temp[20] = system_settings.right_scanner.low_alarm;
 l = eggs_cleaned;
 temp[21] = l % 65536UL;
 l /= 256UL; // knock off lo byte
 temp[22] = l % 256UL;
 temp[23] = l / 256UL;
 l = rows_cleaned;
 temp[24] = l % 65536UL;
 l /= 256UL; // knock off lo byte
 temp[25] = l % 256UL;
 temp[26] = l / 256UL;
 temp[27] = 0;
 send_rs232_data (temp, 27);
 break;

 // return system to eeprom defaults
 case 'r': system_settings = eeprom_settings;
 send_rs232_data ("r", 1);
 break;

 // save all variables into eeprom
 case 's': count1 = i2c_eeprom_char_write (EEPROM, 0x00,
system_settings.pulse_delay);
 count1 += i2c_eeprom_char_write (EEPROM, 0x02,
system_settings.start_pos);
 count1 += i2c_eeprom_char_write (EEPROM, 0x04,
system_settings.stop_pos);
 count1 += i2c_eeprom_char_write (EEPROM, 0x06,
system_settings.egg_width);
 count1 += i2c_eeprom_char_write (EEPROM, 0x08,
system_settings.egg_spacing);

 count1 += i2c_eeprom_char_write (EEPROM, 0x0a,
system_settings.galvo_max_amp);
 count1 += i2c_eeprom_char_write (EEPROM, 0x0c,
system_settings.galvo_offset);
 count1 += i2c_eeprom_char_write (EEPROM, 0x0e,
system_settings.galvo_scan_profile);

8: Appendices

- 225 -

 count1 += i2c_eeprom_char_write (EEPROM, 0x10,
system_settings.top_scanner.amplitude);
 count1 += i2c_eeprom_char_write (EEPROM, 0x12,
system_settings.top_scanner.low_alarm);
 count1 += i2c_eeprom_char_write (EEPROM, 0x14,
system_settings.top_scanner.upper_threshold);
 count1 += i2c_eeprom_char_write (EEPROM, 0x16,
system_settings.top_scanner.lower_threshold);

 count1 += i2c_eeprom_char_write (EEPROM, 0x18,
system_settings.left_scanner.amplitude);
 count1 += i2c_eeprom_char_write (EEPROM, 0x1a,
system_settings.left_scanner.low_alarm);
 count1 += i2c_eeprom_char_write (EEPROM, 0x1c,
system_settings.left_scanner.upper_threshold);
 count1 += i2c_eeprom_char_write (EEPROM, 0x1e,
system_settings.left_scanner.lower_threshold);

 count1 += i2c_eeprom_char_write (EEPROM, 0x20,
system_settings.right_scanner.amplitude);
 count1 += i2c_eeprom_char_write (EEPROM, 0x22,
system_settings.right_scanner.low_alarm);
 count1 += i2c_eeprom_char_write (EEPROM, 0x24,
system_settings.right_scanner.upper_threshold);
 count1 += i2c_eeprom_char_write (EEPROM, 0x26,
system_settings.right_scanner.lower_threshold);

 count1 += i2c_eeprom_char_write (EEPROM, 0x28,
system_settings.laser_power.high);
 count1 += i2c_eeprom_char_write (EEPROM, 0x2a,
system_settings.laser_power.low1);
 count1 += i2c_eeprom_char_write (EEPROM, 0x2c,
system_settings.laser_power.low2);
 count1 += i2c_eeprom_char_write (EEPROM, 0x2e,
system_settings.laser_power.test);
 count1 += i2c_eeprom_char_write (EEPROM, 0x30,
system_settings.laser_power.tickle);
 count1 += i2c_eeprom_char_write (EEPROM, 0x32,
system_settings.laser_power.frequency);

 // return success command or not here?
 if (count1 == 0)
 {
 eeprom_settings = system_settings; // update eeprom
settings
 send_rs232_data ("s", 1);
 }
 break;

 // Send eprom settings to host computer
 case 't':
 break;

 // set left galvonometer position manually
 case 'u': set_left_dtoa (rsdata[1]);
 send_rs232_data ("u", 1);
 break;

 // set right galvonometer position manually
 case 'v': set_right_dtoa (rsdata[1]);
 send_rs232_data ("v", 1);
 break;

 default: break;
 }
}

/***/
/* Name: itoa */
/* Description: Converts an integer into its ascii representation */
/* Input: value - the number to be converted */
/* radix - the base for the conversion */
/* Return Value: pointer to the end of the string */
/***/

8: Appendices

- 226 -

char* itoa (unsigned long value, unsigned char radix)
{
 xdata char new_string[14]; // temporary charater string
 xdata char new_string2[14]; // temporary charater string
 xdata char temp_char; // character store used in conversion
 xdata char position = 0; // current character position
 xdata unsigned long remainder; // remainder from division

 if (value < 1)
 new_string[position++] = '0';
 else
 {
 for (position = 0; value > 0;) // loop for all digits in number
 {
 remainder = value % radix;
 value = value / radix;

 if ((temp_char = (unsigned char) remainder + '0') > '9')
 temp_char += 'A'-'0'-10;

 new_string[position++] = temp_char; // store the character
 }
 }

 position--; // back to end character

 // invert string
 for (temp_char = 0; position >= 0; temp_char++, position--)
 new_string2[temp_char] = new_string[position];

 new_string2[temp_char] = 0; // add string end null char.

 return (new_string2); // return ptr to end of string
}

/***/
/* Name: set_galvos */
/* Description: send set value to left and right d/a converters */
/* Input: unsigned char value */
/* Return Value: - */
/***/

void set_galvos (unsigned char pulse_number)
{
 switch (system_settings.galvo_scan_profile)
 {
 // set to centre position
 case STATIC_PROFILE: set_dtoas (127);
 break;

 // set to offset position plus incremental pulse position
 case LINEAR_PROFILE: set_dtoas (pulse_number +
system_settings.galvo_offset);
 break;

 // set to offset position plus incremental pulse position
 case COMPENSATED_PROFILE: set_dtoas (scan_profile[pulse_number] +
system_settings.galvo_offset);
 // do this via algorithm ?
 break;
 default: break;
 }
 /*unsigned int scale;
 scale = value * system_settings.galvo_max_amp;
 scale = scale / 0xff;

 PIO2 = (unsigned char) scale; */

 // do we need to scale galvos, add offset here?????
}

/***/
/* End Of Module */
/***/

8: Appendices

- 227 -

8.4 Appendix 4: Research System Remote Control
Program

The following listings detail the software developed for the trial machine’s remote

control program written in Microsoft’s Visual Basic language (version 4).

Being of a visual / object oriented nature, much of the software code generated by

the Visual Basic program pertains to the description of the visual objects (buttons,

textboxes and images for example). As this code is quite voluminous and does

little to add to the description of the operation of the program, these have been

omitted from the listings below for the sake of brevity.

8.4.1 adas1.glo

DefInt A-Z

'--- MSComm event constants
Global Const MSCOMM_EV_SEND = 1
Global Const MSCOMM_EV_RECEIVE = 2
Global Const MSCOMM_EV_CTS = 3
Global Const MSCOMM_EV_DSR = 4
Global Const MSCOMM_EV_CD = 5
Global Const MSCOMM_EV_RING = 6
Global Const MSCOMM_EV_EOF = 7

'--- MSComm error code constants
Global Const MSCOMM_ER_BREAK = 1001
Global Const MSCOMM_ER_CTSTO = 1002
Global Const MSCOMM_ER_DSRTO = 1003
Global Const MSCOMM_ER_FRAME = 1004
Global Const MSCOMM_ER_OVERRUN = 1006
Global Const MSCOMM_ER_CDTO = 1007
Global Const MSCOMM_ER_RXOVER = 1008
Global Const MSCOMM_ER_RXPARITY = 1009
Global Const MSCOMM_ER_TXFULL = 1010

'--- Common Dialog constants
Global Const CDERR_CANCEL = 32755
Global Const CF_SCREENFONTS = &H1&

'--- Global variables
Global CancelSend 'Flag to stop sending

'--- RS232 protocol constants
Global Const SOH_DATA = 1
Global Const EOT_DATA = 4
Global Const SUB_DATA = 27
Global Const NUL_DATA = 0

Global q_sent

8: Appendices

- 228 -

#If Win32 Then
 Declare Sub SetWindowPos Lib "user32" (ByVal hWnd As Long, ByVal
hWndInsertAfter As Long, ByVal X As Long, ByVal Y As Long, ByVal cx As Long, ByVal
cy As Long, ByVal wFlags As Long)
#Else
 Declare Sub SetWindowPos Lib "USER" (ByVal hWnd%, ByVal hWndInsertAfter%,
ByVal X%, ByVal Y%, ByVal cx%, ByVal cy%, ByVal wFlags%)
#End If

8.4.2 cansend.frm

'***
' CANSEND.FRM is a dialog box that allows the user
' to cancel a "Transmit Text File" operation. This
' is a modeless form that acts modal while allowing
' other processes to continue.
'***

DefInt A-Z
Option Explicit

Const SWP_NOMOVE = &H2
Const SWP_NOSIZE = &H1

Private Sub Command1_Click()
 CancelSend = True
End Sub

Private Sub Form_Activate()
 ' Make this form a floating window that is always on top.
 SetWindowPos hWnd, -1, 0, 0, 0, 0, SWP_NOMOVE Or SWP_NOSIZE
End Sub

Private Sub Form_Deactivate()
 If Not CancelSend Then
 Form2.Show
 End If
End Sub

8.4.3 adas1.frm

Private Sub COM_PORT_SELECT_Click(Index As Integer)
 If Index = 1 Then
 COM_PORT_SELECT(1).Checked = True
 COM_PORT_SELECT(2).Checked = False
 Else
 COM_PORT_SELECT(1).Checked = False
 COM_PORT_SELECT(2).Checked = True
 End If
 NewPort = Index

 On Error Resume Next

8: Appendices

- 229 -

 OldPort = MSComm1.CommPort
 If NewPort <> OldPort Then 'if port num changing
 If MSComm1.PortOpen Then 'close the old port
 MSComm1.PortOpen = False
 ReOpen = True
 End If

 MSComm1.CommPort = NewPort 'set new port number

 If Err = 0 Then
 If ReOpen Then
 MSComm1.PortOpen = True
 End If
 End If

 If Err Then
 MsgBox Error$, 48
 MSComm1.CommPort = OldPort
 MSComm1.PortOpen = True
 COM_PORT_SELECT(OldPort).Checked = True
 COM_PORT_SELECT(NewPort).Checked = False
 Exit Sub
 End If
 End If
End Sub

Private Sub default_eeprom_Click(Index As Integer)
response = MsgBox("Are you sure you wish to reset to system EEPROM settings?", 36,
"Reload EEPROM")
 If response = 6 Then
 Send_data ("r")
 End If
End Sub

Private Sub default_eprom_Click(Index As Integer)
response = MsgBox("Are you sure you wish to reset to system default settings?",
36, "Reload Defaults")
 If response = 6 Then
 Send_data ("p")
 End If
End Sub

Private Sub download_settings_Click(Index As Integer)
 Send_data ("q")
End Sub

Private Sub egg_spacing_Change()
 num = Val(egg_spacing.Text)
 If num > 255 Then num = 255
 If num < 0 Then num = 0
 egg_spacing.Text = Str$(num)
 If q_sent = 0 Then
 Send_data ("n" + Chr$(num))
 egg_spacing.ForeColor = &HFF&
 End If
End Sub

Private Sub egg_width_Change()
 num = Val(egg_width.Text)
 If num > 255 Then num = 255
 If num < 0 Then num = 0
 egg_width.Text = Str$(num)
 If q_sent = 0 Then
 Send_data ("o" + Chr$(num))
 egg_width.ForeColor = &HFF&
 End If
End Sub

8: Appendices

- 230 -

Private Sub Exit_button_Click()
 response = MsgBox("Are you sure?", 20, "Exit")

 If response = 6 Then
 Unload Me
 End
 End If

End Sub

Private Sub fire_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
If laser_enable.Value = False Then
 MsgBox "Please ensure LASER is enabled.", 48, "Laser Not Enabled"
 Else
 Send_data ("G")
 fire_timer = Enabled
 End If
End Sub

Private Sub fire_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 'Mode.Caption = "Manual"
 'Mode.ForeColor = &HFF00&
 Send_data ("H")
End Sub

Private Sub fire_timer_Timer()
 fire_timer.Enabled = False
 Send_data ("H")
End Sub

Private Sub Form_Load()
 CRLF$ = Chr$(13) + Chr$(10)

 MSComm1.CommPort = 2
 MSComm1.Settings = "9600,N,8,1"
 MSComm1.Handshaking = False
 MSComm1.InputLen = 0
 MSComm1.RThreshold = 1

 On Error Resume Next
 MSComm1.PortOpen = True

 If Err Then
 MsgBox Error$, 48
 MSComm1.PortOpen = False
 COM_PORT_SELECT(1).Checked = False
 Exit Sub
 End If

 send_data_timer.Enabled = True

 galvo_profile.AddItem "(None)", 0
 galvo_profile.AddItem "Linear", 1
 galvo_profile.AddItem "+Ve Compensation", 2

 Send_data ("q")

End Sub

Private Sub Form_Unload(Cancel As Integer)
 If MSComm1.PortOpen Then
 MSComm1.PortOpen = False
 End If
End Sub

8: Appendices

- 231 -

Private Sub forward_delay_Change()
 num = Val(forward_delay.Text)
 If num > 255 Then num = 255
 If num < 0 Then num = 0
 forward_delay.Text = Str$(num)
 If q_sent = 0 Then
 Send_data ("k" + Chr$(num))
 forward_delay.ForeColor = &HFF&
 End If
End Sub

Private Sub galvo_amplitude_Change()
 galvo_amplitude_text.Text = Str$(galvo_amplitude.Value)
 If q_sent = 0 Then
 Send_data ("M" + Chr$(galvo_amplitude.Value))
 galvo_amplitude_text.ForeColor = &HFF&
 End If
End Sub

Private Sub galvo_offset_Change()
 galvo_offset_text.Text = Str$(galvo_offset.Value)
 If q_sent = 0 Then
 Send_data ("N" + Chr$(galvo_offset.Value))
 galvo_offset_text.ForeColor = &HFF&
 End If
End Sub

Private Sub galvo_position_left_Change()
 galvo_position_left_text.Text = Str$(galvo_position_left.Value)
 Send_data ("u" + Chr$(galvo_position_left.Value))
End Sub

Private Sub galvo_position_right_Change()
 galvo_position_right_text.Text = Str$(galvo_position_right.Value)
 Send_data ("v" + Chr$(galvo_position_right.Value))
End Sub

Private Sub galvo_profile_Click()
 output_value = galvo_profile.ListIndex
 If q_sent = 0 Then
 Send_data ("L" + Chr$(output_value))
 galvo_profile.ForeColor = &HFF&
 End If
End Sub

Private Sub Help_Click()
 CMDialog1.HelpFile = "eggwash.hlp"
 CMDialog1.HelpCommand = HELP_INDEX
 CMDialog1.Action = 6
End Sub

Private Sub Help_menu_selection_Click(Index As Integer)
 If Index = 5 Then
 About.Show MODAL
 ElseIf Index = 1 Then
 CMDialog1.HelpCommand = &H4 'help on help
 CMDialog1.Action = 6
 ElseIf Index = 2 Then
 CMDialog1.HelpFile = "litewash.hlp"
 CMDialog1.HelpCommand = &H3 'contents
 CMDialog1.Action = 6
 ElseIf Index = 3 Then
 CMDialog1.HelpFile = "litewash.hlp"
 CMDialog1.HelpCommand = &H105 'search
 CMDialog1.Action = 6
 End If
End Sub

8: Appendices

- 232 -

Private Sub laser_enable_Click(Value As Integer)
 If q_sent = 0 Then
 If laser_enable.Value = False Then
 Send_data ("B")
 Else
 Send_data ("A")
 End If
 End If
End Sub

Private Sub laser_frequency_Change()
 laser_frequency_text.Text = Str$(laser_frequency.Value)
 If q_sent = 0 Then
 Send_data ("+" + Chr$(laser_frequency.Value))
 laser_frequency_text.ForeColor = &HFF&
 End If
End Sub

Private Sub laser_power_high_Change()
 laser_power_high_text.Text = Str$(laser_power_high.Value)
 If q_sent = 0 Then
 Send_data ("R" + Chr$(laser_power_high.Value))
 laser_power_high_text.ForeColor = &HFF&
 End If
End Sub

Private Sub laser_power_low1_Change()
 laser_power_low1_text.Text = Str$(laser_power_low1.Value)
 If q_sent = 0 Then
 Send_data ("S" + Chr$(laser_power_low1.Value))
 laser_power_low1_text.ForeColor = &HFF&
 End If
End Sub

Private Sub laser_power_low2_Change()
 laser_power_low2_text.Text = Str$(laser_power_low2.Value)
 If q_sent = 0 Then
 Send_data ("T" + Chr$(laser_power_low2.Value))
 laser_power_low2_text.ForeColor = &HFF&
 End If
End Sub

Private Sub laser_power_test_Change()
 laser_power_test_text.Text = Str$(laser_power_test.Value)
 If q_sent = 0 Then
 Send_data ("U" + Chr$(laser_power_test.Value))
 laser_power_test_text.ForeColor = &HFF&
 End If
End Sub

Private Sub laser_power_tickle_Change()
 laser_power_tickle_text.Text = Str$(laser_power_tickle.Value)
 If q_sent = 0 Then
 Send_data ("V" + Chr$(laser_power_tickle.Value))
 laser_power_tickle_text.ForeColor = &HFF&
 End If
End Sub

Private Sub save_current_eeprom_Click(Index As Integer)
response = MsgBox("Are you sure you wish to save all current settings to the
EEPROM?", 36, "Save Current Settings")
 If response = 6 Then
 Send_data ("s")
 End If
End Sub

8: Appendices

- 233 -

Private Sub scanner_left_alarm_Change()
 scanner_left_alarm_text.Text = Str$(scanner_left_alarm.Value)
 If q_sent = 0 Then
 Send_data ("W" + Chr$(scanner_left_alarm.Value))
 scanner_left_alarm_text.ForeColor = &HFF&
 End If
End Sub

Private Sub scanner_right_alarm_Change()
 scanner_right_alarm_text.Text = Str$(scanner_right_alarm.Value)
 If q_sent = 0 Then
 Send_data ("X" + Chr$(scanner_right_alarm.Value))
 scanner_right_alarm_text.ForeColor = &HFF&
 End If
End Sub

Private Sub scanner_top_alarm_Change()
 scanner_top_alarm_text.Text = Str$(scanner_top_alarm.Value)
 If q_sent = 0 Then
 Send_data ("Y" + Chr$(scanner_top_alarm.Value))
 scanner_top_alarm_text.ForeColor = &HFF&
 End If
End Sub

Private Sub test_fire_MouseDown(Button As Integer, Shift As Integer, X As Single,
Y As Single)
 If laser_enable.Value = False Then
 MsgBox "Please ensure LASER is enabled.", 48, "Laser Not Enabled"
 Else
 If spare1_relay.Value = True Then Send_data ("#") 'LASER 1 FIRE
 If spare2_relay.Value = True Then Send_data ("?") 'LASER 2 FIRE
 End If
End Sub

Private Sub test_fire_MouseUp(Button As Integer, Shift As Integer, X As Single, Y
As Single)
 Mode.Caption = "Manual"
 Mode.ForeColor = &HFF00&
 Send_data ("&") 'LASER 1 OFF
 Send_data ("$") 'LASER 2 OFF
End Sub

Private Sub laser_freq_change()
 Laser_freq_text = Str$(laser_freq.Value)

 Select Case laser_freq.Value
 Case 4: output_value = 63
 Case 5: output_value = 47
 Case 6: output_value = 33
 Case 7: output_value = 23
 Case 8: output_value = 16
 Case 9: output_value = 10
 Case 10: output_value = 5
 End Select

 Call laspow_high_change
 Call laspow_low1_change
 Call laspow_low2_change
 Call laspow_test_change
 Send_data ("+" + Chr$(output_value))
End Sub

Private Sub laser_ready_Click(Value As Integer)
 If q_sent = 0 Then
 If laser_ready.Value = False Then
 Send_data ("D")
 Else
 Send_data ("C")
 End If
 End If
End Sub

8: Appendices

- 234 -

Private Sub laspow_high_change()
 Laspow_high_text = Str$(laspow_high.Value)

 output_value = laspow_high.Value
 If laspow_high.Value < output_value_min Then
 output_value = output_value_min / 2
 End If
 output_value = output_value * (output_value_max / 63)
 Send_data ("R" + Chr$(output_value))
End Sub

Private Sub laspow_low1_change()
 Laspow_low1_text = Str$(laspow_low1.Value)

 Select Case laser_freq.Value
 Case 4: output_value_max = 63
 output_value_min = 6
 Case 5: output_value_max = 55
 output_value_min = 6
 Case 6: output_value_max = 45
 output_value_min = 7
 Case 7: output_value_max = 38
 output_value_min = 9
 Case 8: output_value_max = 34
 output_value_min = 10
 Case 9: output_value_max = 30
 output_value_min = 11
 Case 10: output_value_max = 26
 output_value_min = 12
 End Select

 output_value = laspow_low1.Value / 2
 If laspow_low1.Value < output_value_min Then
 output_value = output_value_min / 2
 End If
 output_value = output_value * (output_value_max / 63)
 Send_data ("S" + Chr$(output_value))
End Sub

Private Sub laspow_low2_change()
 Laspow_low2_text = Str$(laspow_low2.Value)
 Select Case laser_freq.Value
 Case 4: output_value_max = 57
 output_value_min = 6
 Case 5: output_value_max = 47
 output_value_min = 7
 Case 6: output_value_max = 39
 output_value_min = 9
 Case 7: output_value_max = 33
 output_value_min = 10
 Case 8: output_value_max = 29
 output_value_min = 11
 Case 9: output_value_max = 26
 output_value_min = 13
 Case 10: output_value_max = 23
 output_value_min = 14
 End Select

 output_value = laspow_low2.Value / 2
 If laspow_low2.Value < output_value_min Then
 output_value = output_value_min / 2
 End If
 output_value = output_value * (output_value_max / 63)
 Send_data ("T" + Chr$(output_value))
End Sub

8: Appendices

- 235 -

Private Sub laspow_test_change()
 Laspow_test_text = Str$(laspow_test.Value)

 Select Case laser_freq.Value
 Case 4: output_value_max = 58
 output_value_min = 4
 Case 5: output_value_max = 48
 output_value_min = 4
 Case 6: output_value_max = 40
 output_value_min = 5
 Case 7: output_value_max = 34
 output_value_min = 6
 Case 8: output_value_max = 30
 output_value_min = 7
 Case 9: output_value_max = 26
 output_value_min = 8
 Case 10: output_value_max = 23
 output_value_min = 9
 End Select

 output_value = laspow_test.Value / 2
 If laspow_test.Value < output_value_min Then
 output_value = output_value_min / 2
 End If
 output_value = output_value * (output_value_max / 63)
 Send_data ("U" + Chr$(output_value))
End Sub

Private Sub laspow_tickle_change()
 Laspow_tickle_text = Str$(laspow_tickle.Value)
 output_value = laspow_tickle.Value + 2
 Send_data ("V" + Chr$((laspow_tickle.Value * 6) - 3))
End Sub

Private Sub manual_click()
 If Mode.Caption = "Auto" Then

 Send_data ("J")

 Mode.Caption = "Manual"
 manual.Caption = "&Auto"

 mirror_1.Enabled = True
 mirror_2.Enabled = True
 laser_enable.Enabled = True
 laser_ready.Enabled = True
 spare1_relay.Enabled = True
 spare2_relay.Enabled = True
 Relay_Outputs.Enabled = True

 Label39.Enabled = True
 Label17.Enabled = True
 Label24.Enabled = True
 galvo_position_left.Enabled = True
 galvo_position_right.Enabled = True
 galvo_position_left_text.Enabled = True
 galvo_position_right_text.Enabled = True

 fire.Enabled = True
 test_fire.Enabled = True
 Else
 Beep
 response = MsgBox("Ensure machine is safe for automatic operation.", 49,
"Automatic Check")
 If response = 1 Then
 Send_data ("I")

 Mode.Caption = "Auto"
 manual.Caption = "&Manual"

 fire.Enabled = False
 test_fire.Enabled = False
 mirror_1.Enabled = False
 mirror_2.Enabled = False

8: Appendices

- 236 -

 'laser_ready.Value = True
 'laser_enable.Value = True
 laser_enable.Enabled = False
 laser_ready.Enabled = False
 spare1_relay.Enabled = False
 spare2_relay.Enabled = False
 Relay_Outputs.Enabled = False

 Label39.Enabled = False
 Label17.Enabled = False
 Label24.Enabled = False
 galvo_position_left.Enabled = False
 galvo_position_right.Enabled = False
 galvo_position_left_text.Enabled = False
 galvo_position_right_text.Enabled = False
 End If
 End If
End Sub

Private Sub mirror_1_Click(Value As Integer)
 If q_sent = 0 Then Send_data ("E")
End Sub

Private Sub mirror_2_Click(Value As Integer)
 If q_sent = 0 Then Send_data ("F")
End Sub

Private Sub MSComm1_OnComm()

 Dim EVMsg$
 Dim ERMsg$

 '--- Branch according to the CommEvent Prop..
 Select Case MSComm1.CommEvent
 '--- Event messages
 Case MSCOMM_EV_RECEIVE
 instring2$ = ""

 ' get data from input buffer
 Do
 instring1$ = MSComm1.Input ' get next data if
available
 instring2$ = instring2$ + instring1$ ' add to main input buffer
 Loop Until Right$(instring1$, 1) = Chr$(EOT_DATA) ' stop when EOT
received

 str_length = Len(instring2$) ' find main string length
 instring1$ = instring2$ ' make a copy of input
string
 instring2$ = "" ' clear input string for
later use

 ' strip out substitution bytes
 For X = 2 To str_length ' ignore 1st byte (SOH)
 char_string$ = Mid$(instring1$, X, 1) ' get character
 If char_string$ <> Chr$(SUB_DATA) Then
 If char_string$ <> Chr$(EOT_DATA) Then
 instring2$ = instring2$ + char_string$ ' add if
normal valid byte
 End If
 Else ' substitution byte
 X = X + 1 ' point to data byte
 char_string$ = Mid$(instring1$, X, 1) ' get data byte
 char_data = Asc(char_string$) ' convert to numeric data
 char_data = char_data Xor 32 ' convert back from
subsitution
 char_string$ = Chr$(char_data) ' convert back to
character
 instring2$ = instring2$ + char_string$ ' add to main
buffer
 End If
 Next X

8: Appendices

- 237 -

 ' ACT ON DATA FOUND......................................>

 Select Case Left$(instring2$, 1)

 Case "+" ' update laser frequency
 q_sent = 1
 laser_frequency.Value = Asc(Mid$(instring2$, 2, 1))
 laser_frequency_text.ForeColor = &H0&
 q_sent = 0

 Case "E" ' show combined lasers
 q_sent = 1
 mirror_1.Value = True
 q_sent = 0

 Case "F" ' show separated lasers
 q_sent = 1
 mirror_2.Value = True
 q_sent = 0

 Case "G" ' show laser firing
 Mode.Caption = "Laser Firing!"
 Mode.ForeColor = &HFF&

 Case "H" ' show laser not firing - return to normal mode
 If manual.Caption = "&Manual" Then
 Mode.Caption = "Auto"
 Else
 Mode.Caption = "Manual"
 End If
 Mode.ForeColor = &HFFFF00

 Case "K" ' reset counters
 If Asc(Mid$(instring2$, 2, 1)) = 0 Then
 egg_num.ForeColor = &HFFFF00
 egg_num.Text = " 0"
 End If
 If Asc(Mid$(instring2$, 3, 1)) = 0 Then
 row_num.ForeColor = &HFFFF00
 row_num.Text = " 0"
 End If

 Case "L" ' update galvo profile
 q_sent = 1
 galvo_profile.ListIndex = Asc(Mid$(instring2$, 2, 1))
 galvo_profile.ForeColor = &H0&
 q_sent = 0

 Case "M" ' update galvo amplitude
 q_sent = 1
 galvo_amplitude.Value = Asc(Mid$(instring2$, 2, 1))
 galvo_amplitude_text.ForeColor = &H0&
 q_sent = 0

 Case "N" ' update galvo offset
 q_sent = 1
 galvo_offset.Value = Asc(Mid$(instring2$, 2, 1))
 galvo_offset_text.ForeColor = &H0&
 q_sent = 0

 Case "O" ' update scanner left amplitude
 q_sent = 1
 scanner_left_amplitude.Value = Asc(Mid$(instring2$, 2, 1))
 scanner_left_amplitude_text.ForeColor = &H0&
 q_sent = 0

 Case "P" ' update scanner right amplitude
 q_sent = 1
 scanner_right_amplitude.Value = Asc(Mid$(instring2$, 2, 1))
 scanner_right_amplitude_text.ForeColor = &H0&
 q_sent = 0

8: Appendices

- 238 -

 Case "Q" ' update scanner top amplitude
 q_sent = 1
 scanner_top_amplitude.Value = Asc(Mid$(instring2$, 2, 1))
 scanner_top_amplitude_text.ForeColor = &H0&
 q_sent = 0

 Case "R" ' update laser high level
 q_sent = 1
 laser_power_high.Value = Asc(Mid$(instring2$, 2, 1))
 laser_power_high_text.ForeColor = &H0&
 q_sent = 0

 Case "S" ' update laser low1 level
 q_sent = 1
 laser_power_low1.Value = Asc(Mid$(instring2$, 2, 1))
 laser_power_low1_text.ForeColor = &H0&
 q_sent = 0

 Case "T" ' update laser low2 level
 q_sent = 1
 laser_power_low2.Value = Asc(Mid$(instring2$, 2, 1))
 laser_power_low2_text.ForeColor = &H0&
 q_sent = 0

 Case "U" ' update laser test level
 q_sent = 1
 laser_power_test.Value = Asc(Mid$(instring2$, 2, 1))
 laser_power_test_text.ForeColor = &H0&
 q_sent = 0

 Case "V" ' update laser tickle level
 q_sent = 1
 laser_power_tickle.Value = Asc(Mid$(instring2$, 2, 1))
 laser_power_tickle_text.ForeColor = &H0&
 q_sent = 0

 Case "W" ' update scanner left alarm
 q_sent = 1
 scanner_left_alarm.Value = Asc(Mid$(instring2$, 2, 1))
 scanner_left_alarm_text.ForeColor = &H0&
 q_sent = 0

 Case "X" ' update scanner right alarm
 q_sent = 1
 scanner_right_alarm.Value = Asc(Mid$(instring2$, 2, 1))
 scanner_right_alarm_text.ForeColor = &H0&
 q_sent = 0

 Case "Y" ' update scanner top alarm
 q_sent = 1
 scanner_top_alarm.Value = Asc(Mid$(instring2$, 2, 1))
 scanner_top_alarm_text.ForeColor = &H0&
 q_sent = 0

 Case "k" ' update forward delay
 q_sent = 1
 forward_delay.Text = Str$(Asc(Mid$(instring2$, 2, 1)))
 forward_delay.ForeColor = &H0&
 q_sent = 0

 Case "l" ' update return start
 q_sent = 1
 return_start.Text = Str$(Asc(Mid$(instring2$, 2, 1)))
 return_start.ForeColor = &H0&
 q_sent = 0

 Case "m" ' update return end
 q_sent = 1
 return_end.Text = Str$(Asc(Mid$(instring2$, 2, 1)))
 return_end.ForeColor = &H0&
 q_sent = 0

8: Appendices

- 239 -

 Case "n" ' update egg spacing
 q_sent = 1
 egg_spacing.Text = Str$(Asc(Mid$(instring2$, 2, 1)))
 egg_spacing.ForeColor = &H0&
 q_sent = 0

 Case "o" ' update egg width
 q_sent = 1
 egg_width.Text = Str$(Asc(Mid$(instring2$, 2, 1)))
 egg_width.ForeColor = &H0&
 q_sent = 0

 Case "p" ' system reset to default eprom settings
 Beep
 response = MsgBox("System has been reset to default EPROM
settings", 49, "Reset to Defaults")
 Send_data ("q")

 Case "r" ' system rest to eeprom settings
 response = MsgBox("System has been reset to EEPROM settings",
49, "Reset to EEPROM settings")
 Send_data ("q")

 Case "s" ' system settings have been saved to eeprom
 response = MsgBox("System settins have been saved to EEPROM",
49, "Settings saved to EEPROM")
 Send_data ("q")

 Case "w" ' increment egg counter
 num = Val(egg_num.Text)
 num = num + 1
 egg_num.Text = Str$(num)

 Case "x" ' update egg and row counters
 num = Asc(Mid$(instring2$, 2, 1))
 num = num + (256 * Asc(Mid$(instring2$, 3, 1)))
 num = num + (65536 * Asc(Mid$(instring2$, 4, 1)))
 egg_num.Text = Str$(num)

 num = Asc(Mid$(instring2$, 5, 1))
 num = num + (256 * Asc(Mid$(instring2$, 6, 1)))
 num = num + (65536 * Asc(Mid$(instring2$, 7, 1)))
 row_num.Text = Str$(num)

 Case "q"
 ' response to request micros data settings
 q_sent = 1

 forward_delay.Text = Str$(Asc(Mid$(instring2$, 2, 1)))
 return_start.Text = Str$(Asc(Mid$(instring2$, 3, 1)))
 return_end.Text = Str$(Asc(Mid$(instring2$, 4, 1)))
 egg_width.Text = Str$(Asc(Mid$(instring2$, 5, 1)))
 egg_spacing.Text = Str$(Asc(Mid$(instring2$, 6, 1)))

 galvo_amplitude.Value = Asc(Mid$(instring2$, 7, 1))
 galvo_offset.Value = Asc(Mid$(instring2$, 8, 1))
 galvo_profile.ListIndex = Asc(Mid$(instring2$, 9, 1))

 laser_power_high.Value = Asc(Mid$(instring2$, 10, 1))
 laser_power_low1.Value = Asc(Mid$(instring2$, 11, 1))
 laser_power_low2.Value = Asc(Mid$(instring2$, 12, 1))
 laser_power_test.Value = Asc(Mid$(instring2$, 13, 1))
 laser_power_tickle.Value = Asc(Mid$(instring2$, 14, 1))
 laser_frequency.Value = Asc(Mid$(instring2$, 15, 1))

 scanner_top_amplitude.Value = Asc(Mid$(instring2$, 16, 1))
 scanner_left_amplitude.Value = Asc(Mid$(instring2$, 17, 1))
 scanner_right_amplitude.Value = Asc(Mid$(instring2$, 18, 1))
 scanner_top_alarm.Value = Asc(Mid$(instring2$, 19, 1))
 scanner_left_alarm.Value = Asc(Mid$(instring2$, 20, 1))
 scanner_right_alarm.Value = Asc(Mid$(instring2$, 21, 1))

 num = Asc(Mid$(instring2$, 22, 1))
 num = num + (256 * Asc(Mid$(instring2$, 23, 1)))
 num = num + (65536 * Asc(Mid$(instring2$, 24, 1)))
 egg_num.Text = Str$(num)

8: Appendices

- 240 -

 num = Asc(Mid$(instring2$, 25, 1))
 num = num + (256 * Asc(Mid$(instring2$, 26, 1)))
 num = num + (65536 * Asc(Mid$(instring2$, 27, 1)))
 row_num.Text = Str$(num)

 q_sent = 0

 Case "Z"
 ' response to request control port settings
 data_input = Asc(Mid$(instring2$, 2, 1))

 If (data_input And 1) = 0 Then
 sys_ready_on.Visible = True
 sys_ready_off.Visible = False
 Else
 sys_ready_off.Visible = True
 sys_ready_on.Visible = False
 End If

 If (data_input And 2) = 0 Then
 fb_on.Visible = False
 fb_off.Visible = True
 Else
 fb_off.Visible = False
 fb_on.Visible = True
 End If

 If (data_input And 4) = 0 Then
 left_right_on.Visible = True
 left_right_off.Visible = False
 Else
 left_right_off.Visible = True
 left_right_on.Visible = False
 End If

 If (data_input And 8) = 0 Then
 egg_sense_on.Visible = True
 egg_sense_off.Visible = False
 Else
 egg_sense_off.Visible = True
 egg_sense_on.Visible = False
 End If

 If (data_input And 16) = 0 Then
 egg_pos_on.Visible = True
 egg_pos_off.Visible = False
 Else
 egg_pos_off.Visible = True
 egg_pos_on.Visible = False
 End If

 If (data_input And 32) = 32 Then
 e_stop_on.Visible = True
 e_stop_off.Visible = False
 'If mode.text = "Auto" Then
 ' MsgBox "Emergency Stop", 16, "E-Stop"
 'End If
 Else
 e_stop_off.Visible = True
 e_stop_on.Visible = False
 End If

 If (data_input And 64) = 0 Then
 spare1_on.Visible = True
 spare1_off.Visible = False
 Else
 spare1_off.Visible = True
 spare1_on.Visible = False
 End If

 If (data_input And 128) = 0 Then
 spare2_on.Visible = True
 spare2_off.Visible = False
 Else
 spare2_off.Visible = True
 spare2_on.Visible = False
 End If

8: Appendices

- 241 -

 ' led status for moving mirrors and scanner alarms
 data_input = Asc(Mid$(instring2$, 3, 1))

 ' show status of leds for moving mirror switches

 If (data_input And 1) = 0 Then
 mirror1_in_on.Visible = True
 mirror1_in_off.Visible = False
 Else
 mirror1_in_off.Visible = True
 mirror1_in_on.Visible = False
 End If

 If (data_input And 2) = 0 Then
 mirror1_out_on.Visible = True
 mirror1_out_off.Visible = False
 Else
 mirror1_out_off.Visible = True
 mirror1_out_on.Visible = False
 End If

 If (data_input And 4) = 0 Then
 mirror2_in_on.Visible = True
 mirror2_in_off.Visible = False
 Else
 mirror2_in_off.Visible = True
 mirror2_in_on.Visible = False
 End If

 If (data_input And 8) = 0 Then
 mirror2_out_on.Visible = True
 Mirror2_out_off.Visible = False
 Else
 Mirror2_out_off.Visible = True
 mirror2_out_on.Visible = False
 End If

 ' show led status for scanner alarms

 If (data_input And 16) = 0 Then
 Leftscan_alarm_on.Visible = True
 Leftscan_alarm_off.Visible = False
 Else
 Leftscan_alarm_off.Visible = True
 Leftscan_alarm_on.Visible = False
 End If

 If (data_input And 32) = 0 Then
 Rightscan_alarm_on.Visible = True
 Rightscan_alarm_off.Visible = False
 Else
 Rightscan_alarm_off.Visible = True
 Rightscan_alarm_on.Visible = False
 End If

 If (data_input And 64) = 0 Then
 Topscan_alarm_on.Visible = True
 Topscan_alarm_off.Visible = False
 Else
 Topscan_alarm_off.Visible = True
 Topscan_alarm_on.Visible = False
 End If

 'show dc power supply status
 data_input = Asc(Mid$(instring2$, 4, 1))

 If (data_input And 1) = 0 Then
 dc_psu1_left_on.Visible = True
 dc_psu1_left_off.Visible = False
 Else
 dc_psu1_left_off.Visible = True
 dc_psu1_left_on.Visible = False
 End If

8: Appendices

- 242 -

 If (data_input And 2) = 0 Then
 dc_psu2_left_on.Visible = True
 dc_psu2_left_off.Visible = False
 Else
 dc_psu2_left_off.Visible = True
 dc_psu2_left_on.Visible = False
 End If

 If (data_input And 4) = 0 Then
 dc_psu3_left_on.Visible = True
 dc_psu3_left_off.Visible = False
 Else
 dc_psu3_left_off.Visible = True
 dc_psu3_left_on.Visible = False
 End If

 If (data_input And 8) = 0 Then
 dc_psu1_right_on.Visible = True
 dc_psu1_right_off.Visible = False
 Else
 dc_psu1_right_off.Visible = True
 dc_psu1_right_on.Visible = False
 End If

 If (data_input And 16) = 0 Then
 dc_psu2_right_on.Visible = True
 dc_psu2_right_off.Visible = False
 Else
 dc_psu2_right_off.Visible = True
 dc_psu2_right_on.Visible = False
 End If

 If (data_input And 32) = 0 Then
 dc_psu3_right_on.Visible = True
 dc_psu3_right_off.Visible = False
 Else
 dc_psu3_right_off.Visible = True
 dc_psu3_right_on.Visible = False
 End If

 ' show laser staus on leds
 data_input = Asc(Mid$(instring2$, 5, 1))

 If (data_input And 1) = 0 Then
 ready_right_on.Visible = True
 ready_right_off.Visible = False
 Else
 ready_right_off.Visible = True
 ready_right_on.Visible = False
 End If

 If (data_input And 2) = 0 Then
 key_right_on.Visible = True
 key_right_off.Visible = False
 Else
 key_right_off.Visible = True
 key_right_on.Visible = False
 End If

 If (data_input And 4) = 0 Then
 water_right_on.Visible = True
 water_right_off.Visible = False
 Else
 water_right_off.Visible = True
 water_right_on.Visible = False
 End If

 If (data_input And 16) = 0 Then
 ready_left_on.Visible = True
 ready_left_off.Visible = False
 Else
 ready_left_off.Visible = True
 ready_left_on.Visible = False
 End If

8: Appendices

- 243 -

 If (data_input And 32) = 0 Then
 key_left_on.Visible = True
 key_left_off.Visible = False
 Else
 key_left_off.Visible = True
 key_left_on.Visible = False
 End If

 If (data_input And 64) = 0 Then
 water_left_on.Visible = True
 water_left_off.Visible = False
 Else
 water_left_off.Visible = True
 water_left_on.Visible = False
 End If

 End Select

 Case MSCOMM_EV_SEND

 Case MSCOMM_EV_CTS
 EVMsg$ = "Change in CTS Detected"
 Case MSCOMM_EV_DSR
 EVMsg$ = "Change in DSR Detected"
 Case MSCOMM_EV_CD
 EVMsg$ = "Change in CD Detected"
 Case MSCOMM_EV_RING
 EVMsg$ = "The Phone is Ringing"
 Case MSCOMM_EV_EOF
 EVMsg$ = "End of File Detected"

 '--- Error messages
 Case MSCOMM_ER_BREAK
 EVMsg$ = "Break Received"
 Case MSCOMM_ER_CTSTO
 ERMsg$ = "CTS Timeout"
 Case MSCOMM_ER_DSRTO
 ERMsg$ = "DSR Timeout"
 Case MSCOMM_ER_FRAME
 EVMsg$ = "Framing Error"
 Case MSCOMM_ER_OVERRUN
 ERMsg$ = "Overrun Error"
 Case MSCOMM_ER_CDTO
 ERMsg$ = "Carrier Detect Timeout"
 Case MSCOMM_ER_RXOVER
 ERMsg$ = "Receive Buffer Overflow"
 Case MSCOMM_ER_RXPARITY
 EVMsg$ = "Parity Error"
 Case MSCOMM_ER_TXFULL
 ERMsg$ = "Transmit Buffer Full"
 Case Else
 ERMsg$ = "Unknown error or event"
 End Select

 If Len(ERMsg$) Then
 '--- Display error messages in an alert
 ' message box.
 Beep
 Ret = MsgBox(ERMsg$, 1, "Press Cancel to Quit, Ok to ignore.")
 ERMsg$ = ""
 '--- If Cancel (2) was pressed
 If Ret = 2 Then
 MSComm1.PortOpen = 0 'Close the port and quit
 End If
 End If
End Sub

Private Sub reset_counts_Click()
 response = MsgBox("Are you sure you wish to reset the counters?", 36, "Reset
Counters")
 If response = 6 Then
 egg_num.ForeColor = &HFF&
 row_num.ForeColor = &HFF&
 Send_data ("K")
 End If
End Sub

8: Appendices

- 244 -

Private Sub scanner_top_amplitude_Change()
 scanner_top_amplitude_text.Text = Str$(scanner_top_amplitude.Value)
 If q_sent = 0 Then
 Send_data ("Q" + Chr$(scanner_top_amplitude.Value))
 scanner_top_amplitude_text.ForeColor = &HFF&
 End If
End Sub

Private Sub return_end_Change()
 num = Val(return_end.Text)
 If num > 255 Then num = 255
 If num < 0 Then num = 0
 return_end.Text = Str$(num)
 If q_sent = 0 Then
 Send_data ("m" + Chr$(num))
 return_end.ForeColor = &HFF&
 End If
End Sub

Private Sub return_start_Change()
 num = Val(return_start.Text)
 If num > 255 Then num = 255
 If num < 0 Then num = 0
 return_start.Text = Str$(num)
 If q_sent = 0 Then
 Send_data ("l" + Chr$(num))
 return_start.ForeColor = &HFF&
 End If
End Sub

Private Sub scanner_right_amplitude_Change()
 scanner_right_amplitude_text.Text = Str$(scanner_right_amplitude.Value)
 If q_sent = 0 Then
 Send_data ("P" + Chr$(scanner_right_amplitude.Value))
 scanner_right_amplitude_text.ForeColor = &HFF&
 End If
End Sub

Private Sub scanner_left_amplitude_Change()
 scanner_left_amplitude_text.Text = Str$(scanner_left_amplitude.Value)
 If q_sent = 0 Then
 Send_data ("O" + Chr$(scanner_left_amplitude.Value))
 scanner_left_amplitude_text.ForeColor = &HFF&
 End If
End Sub

Private Sub Send_data(data_string$)

 Command1$ = Left$(data_string$, 1) ' get 1st byte to send

 If Len(data_string$) > 1 Then ' if multiple bytes to send
 data1$ = Mid$(data_string$, 2, 1) ' get 2nd byte
 If data1$ = Chr$(SUB_DATA) Or data1$ = Chr$(EOT_DATA) Or data1$ = Chr$(0)
Then
 data_asc = Asc(data1$) ' get byte to substitute
 data_asc = data_asc Xor 32 ' alter byte
 data1$ = Chr$(SUB_DATA) + Chr$(data_asc) ' andd substitution byte
 End If
 ' send command for multiple bytes
 MSComm1.Output = Chr$(SOH_DATA) + Command1$ + data1$ + Chr$(EOT_DATA)
 Else
 ' send command for single byte
 MSComm1.Output = Chr$(SOH_DATA) + Command1$ + Chr$(EOT_DATA)
 End If

End Sub

8: Appendices

- 245 -

Private Sub send_data_timer_Timer()
 Send_data ("Z")
End Sub

Private Sub upload_ram_Click()
 On Error Resume Next
 Dim hSend, BSize, LF&

 send_data_timer.Enabled = False
 MsgBox "Ensure PC COM port is connected to micro-controller. Then press the
micro reset button.", 48, "Connect COM Lead"

 ' Get the text filename from the user.
 OpenLog.DialogTitle = "Send Hex File"
 OpenLog.Filter = "Hex Files (*.HEX)|*.hex|All Files (*.*)|*.*"
 Do
 OpenLog.filename = ""
 OpenLog.ShowOpen
 If Err = cdlCancel Then Exit Sub
 Temp$ = OpenLog.filename

 ' If the file doesn't exist, go back.
 Ret = Len(Dir$(Temp$))
 If Err Then
 MsgBox Error$, 48
 MsgBox "Ensure PC COM port is re-connected to Light Wash Machine.", 48,
"Connect COM Lead"
 send_data_timer.Enabled = True
 Exit Sub
 End If
 If Ret Then
 Exit Do
 Else
 MsgBox Temp$ + " not found!", 48
 End If
 Loop

 ' Open the log file.
 hSend = FreeFile
 Open Temp$ For Binary Access Read As hSend
 If Err Then
 MsgBox Error$, 48
 Else
 ' Display the Cancel dialog box.
 CancelSend = False
 Form2.Label1.Caption = "Transmitting Hex File - " + Temp$
 Form2.Show
 Form2.progress.Value = 0
 bytes_sent = 0

 ' Read the file in blocks the size of the transmit buffer.
 BSize = MSComm1.OutBufferSize
 LF& = LOF(hSend)
 Do Until EOF(hSend) Or CancelSend
 ' Don't read too much at the end.
 If LF& - Loc(hSend) <= BSize Then
 BSize = LF& - Loc(hSend) + 1
 End If

 ' Read a block of data.
 Temp$ = Space$(BSize)
 Get hSend, , Temp$

 ' Transmit the block.
 MSComm1.Output = Temp$
 If Err Then
 MsgBox Error$, 48
 Exit Do
 End If

8: Appendices

- 246 -

 ' Wait for all the data to be sent.
 Do
 Ret = DoEvents()
 Loop Until MSComm1.OutBufferCount = 0 Or CancelSend

 bytes_sent = bytes_sent + BSize
 Form2.progress.Value = (bytes_sent / LF&) * 100
 Loop
 End If

 Close hSend
 CancelSend = True
 Form2.Hide
 MsgBox "Ensure PC COM port is re-connected to Light Wash Machine.", 48,
"Connect COM Lead"
 send_data_timer.Enabled = True

End Sub

	: INTRODUCTION
	Introduction
	The Need
	Laser Advantages
	Existing Knowledge
	Investigation Aims

	: CELL PHYSIOLOGY AND STERILISATION METHODS
	Introduction
	Cell Physiology
	Bacteria
	Bacterial Capsule
	Gram Stain Reaction
	Flagella
	Pili
	Endospores
	Cell Walls
	Nucleus
	Metabolism and Reproduction
	Temperature Effects on Growth
	Aeration Effects on Growth
	Light Effects on Growth
	Salmonella

	Viruses
	Fungi

	Current Sterilisation Methods
	Heat
	Dry Heat
	Moist Heat (Autoclaving)
	Cold
	Desiccation
	Cellular Disintegration
	Chemical Disinfectants
	Halogens
	Alkylating Reagents
	Pheonolic Compounds
	Aldehydes
	Alcohols
	Acids and Alkalis
	Heavy Metals and Their Salts

	White Light
	Ultra-violet Light
	Laser Light
	Plasma
	Electric Fields
	Ionising Radiation

	Summary

	: LASER PARAMETER SELECTION
	Introduction
	Wavelength Selection
	Electromagnetic Spectrum
	Photon Energies
	Principal Radiation Effects
	Light Absorption
	Light Absorption in Water
	Wavelength Analysis
	Visible light
	Visible Light with Photosensitisation
	Ultra-violet Light
	Infrared Light
	Infrared Light - Nd:YAG
	Infrared Light - CO2

	Selected Laser Wavelength
	Spatial and Temporal Profile Analysis
	Spatial Analysis
	Temporal analysis

	Summary

	: EXPERIMENTAL SYSTEM DESIGN
	Introduction
	Egg Structure
	Egg Shell
	True Shell
	Pores
	Cuticle
	Shell pigmentation
	Membranes
	Air Space

	Egg Albumen (Egg White)
	Egg Yolk

	Specific Egg Handling Requirements
	Concept Design
	Resonant Scanner Concept
	Tracking Galvanometer Concept

	Specific Design Parameters
	Outline System Design
	Resonant Scanner with Laser Power Modulation
	General Beam Manipulation
	Beam Combining
	Laser Decoupling
	Focus Adjustment

	Return Stroke Optimisation
	Movement of Mirrors

	Tracking Mirror Optimisation
	Uniformity of Laser Coverage
	Galvanometer Positioning
	Galvanometer Tracking

	General Construction
	System Control
	Summary

	: EXPERIMENTAL ANALYSIS
	Introduction
	Methodology
	Microbiological Methodology
	Microbial Contamination
	Micro-organism Measurement

	Experimental Configuration

	Results
	Analysis
	Statistical Analysis
	Data Manipulation
	Kill Rate Calculations

	System Analysis

	Summary

	: DISCUSSION
	Introduction
	Discussion
	Conclusions
	Future Work

	: BIBLIOGRAPHY
	: APPENDICES
	Appendix 1: Prototype Trial Results
	Appendix 2: Utility Program
	Appendix 3: Research System Control Program
	Appendix 4: Research System Remote Control Program

